Advanced Card Systems Ltd. @

AETG63 BIoTRUSTKey

. il

IGATION PROGRAMMING INTERFAGE

i,
w& ersion1.7 o02-2006 '

Unit 1008, 10th Floor, Hongkong International Trade and Exhibition Centre
1 Trademart Drive, Kowloon Bay, Hong Kong

Tel: +852 2796 7873 Fax: +852 2796 1286 Email: info@acs.com.hk Website: www.acs.com.hk

AET63 API Guide version 1.7 February 2006

Contents
1. 011 o 11 o3 1o o 1 PPt 4
2. I8 231/ 80 5
2.1 L YT 11 SRR 5
2.2 COMMUNICAION SPEEAooiiiiiiiiieeee et e e e e ettt e e e e e e e e et b b e e e e e eeeeeeeaabeeeeeeeeennrnnneeas 5
2.3 TFMAPI = Smart Card REAUETooee et e et e e e e e e e e e e e e e e s e nneeeeas 5
2.3.1 INEETfACE DAIA SIFUCIUFE. ...ttt ettt 5
2.3.1.1 ALC APDUL ..ttt ettt ettt ettt ettt e teeR e et a s et et e s e st eneent et e entensesenteeneeneeneens 5
2.3.1.2 AC SESSION L.ttt ettt bttt et e et et e et e e b e ebeeb e ea e e st e s et e bt eaeebe e st ant e teateeaeeaeeneenean 6
2.3.1.3 AC INFO oottt ettt et ettt e te et e e st e esb e e saessae s st esbeesseesseasseessesseesseenseesseesaesseenseenns 7
2.4 TFM API — FINGEIrPIINT SCANNETcciiiiiiieiiiie ettt e e et e e e sttt e e e s esbeeaeeenseeeesanteeeeennseeeenneeas 8
24.1 TYDE DECIAVALIONS ...ttt ettt ettt et ettt et nee 8
2.4.2 TNEEFFACE DIALA SIIUCIUF@. ...ttt ettt et et eta e eteebeenbeenseenaeens 8
2.4.2.1 PT _GLOBAL INFO ..ottt ettt ettt e e sae s aaesseeseenseessesssaesaenseenseenseensesnnesnnanns 8
2.4.2.2 PT DATA oottt ettt ettt e st et e s et e e st et e e st eneens e s e be st et e ene e Rt ent e st ent e seeteeneeseeneanean 9
2423 PT _MEMORY FUNCS. ... oottt ettt sttt sttt et e e et e e bt eae et e eseeneeneenteabeeeeeneeneas 9
2424 PT BIR HEADERocoiioiieiiiiecteteee ettt sttt et ettt ettt e st e eesaessaessaessaeseessaessenssessaesseeseensas 9
e T i N = 7 1 SRR 10
2.4.2.6 PT _INPUT BIR ..ottt ettt ettt et ebe s e et e eseastessessensesseesesseessensansensenseanenns 10
242,77 PT INFO .ttt ettt ettt be et e bt e st ea s et et e e bt ebeeseeneeseeneenbeabeeeeaneeneeneens 10
2.4.2.8 PT SESSION CFG ...uoootieiieiieiieieettertteie ettt st s e esteesbe b e esaessaesseessaesseessesssesssesseesseesseenseessenssens 11
2.4.2.9 PT FINGER _LIST ..ottt ettt ettt te sttt et e et essaesseesaenseensasnsesnnesseesseenseenseensennsens 12
2.4.2.10 PT _NAVIGATION CALLBACK ... oottt etteteiieteiee sttt eetetesestessesse st aseeneessesessessesseeseans 13
2.4.3 FURCTIONS ... et 14
2.4.3.1 Application General FUNCHONScccveriiriieiieieeteie ettt e stee e esteeae e steesaeesseesseessesseesssesseesseesses 14
N T - T S I 1o = = PR 14
G 70 T o T o I =" 141 = PP PSPPI 14
2.4.3.1.C PTGIODAIINTO 1.veeiieeiieereeereeereeeeseeeeeeersessrerseesssessssssessnssnesssnsnnnennnnns 14
N T o B = o= o TP 15
2.4.3.1.8 PTCIOSE crvrruuiiiiiieirnniee s s eeesrssss s s s sserrsssa s s s s s serrssaasssee e e e n s s seseeerrnns s eee e e e e s aeaeeeenseennnnnnnnranans 15
2.4.3.1.f PTSEtGUICAIIDACKS ... cuuerrreererssessisrrrrreesssssssssssrereresssssssssrrreresessssssssnrnneesesssesssssrnnesessnssnnnneeses 15
N T I o T S I == 17
2432 PerfectTrust BIOMEtric fUNCHONS.cuiiiiiieeiieeiieeiie ettt ettt veeser e s eae e aaeeseaeessaeesseensneens 17
DG T - T ol -1 o U =SOSR 17
B G 10 o T = I = o)| PSPPI 18
N A ol = I = o o] | o 20
B T e B ol = oV o] | K] G S TSR OPRRP 20
2.4.3.2.8 PTVENfYMAtCN ... cciiiiie e e r e e 21
B T S = XY= o Y ST SSTTRO 22
N e B o XY = 1Y 23
2.4.3.2.0 PTVEITYSCAIl ..utreeeiiiieieeerreeeres s s ssssrnrerss s s s s ssssrarrresssssssssssrreeesessssssssnraneeeeessesassssnnessesanrnnnneess 24
D T A B = Y= 41 Y G PP SPPPP TP 26
B T A T = XY= 1177 | USSR 27
B G T QN o D= <o T o] PSPPI 29
2.4.3.2.1 PTSHOrEFINGEN ..t iiiittuiee s i eeeeeite e e s e e e e s s e e e e e e s e e e e e r s s e s e e e e e n s e e e ee e e e e s aaeeeeeeeeeernr i raaans 29
2.4.3.2.M PTDEIEEEFINGEN ...eeiiieiiiiiiieiieei ittt et st e et e e et e e e e e e e e e e e e e e e e e re e e ee e s ae s sees s seesseesnsssenrsnnssnsrrreereeneeenernn 30
N T S o B 1= =Y | g Vo T PP 30
2.4.3.2.0 PTSetFINGerDatac.cceiiiiiiiiiiiiiiiiiiiiiie ettt ee s eeeree s ae s rsnrranrrnr e eereeererees 31
B G T o T ol €= g T[T 5 D = | v N 31
2.4.3.2.0 PTLISTAIFINGEIS . eeitteiieeiieetieerteereeeseeeeseeeseseseerssesseesresssesssssssssssssssesssnssssssssssssssssssnssnessssssennnnnnns 31
B e T S S L @ 11 o] = | (PP 32
B G 1072 o I\ = . - | = PP 32
B T A A ol 1 6ol @] 11 o] = | P SO PPRP 33
N T U B o 1Yo o[LU =) PRSPPIt 34
B T YA L N a1 0Tl] L@ T o U PP 34
2433 PerfectTrust Miscellaneous fUNCIONSeecuieriieiieieriieieeie ettt sseesneenees 35
B G G - T ol) (o PPN 35

© Advanced Card Systems Ltd. Page 2 of 56

AET63 API Guide version 1.7 February 2006

2.4.3.3.0 PTDIAgNOSHICS 1ieiiieiiieiiieiieeiieesieetieereeeseeeeseeseerreee e eeee e s esaesee e s see s aeeseee s enessessesessessnnssnnrreeeeeeereennnnn 35

2.4.3.3.C PTSEtSESSIONCIGEX ...uuurreerieeasissaasnrereaaeassssssssreeasasssssssnsseeesasssssasnnsaneeseessessnssnneeessnnnsnnnneess 35

2.4.3.3.d PTGEtSESSIONCIGEX ..iiiiiiiiiiiieiiiiiieeiiees i ee s e et e e s e e e e e e e e e e e ae e eeee e eee s eeesassssnsssnssnssbnsbreeeeeennnnns 36

2.4.3.3.e PTGetAvailableMEmOrycciiiiiiiiiiiiii 36

B NG TG TN N o 1 T= 1 VY o] o] B - = F PP PRPPNE 37

R G TR o R o I €11 Yoo = 37

N TG TN o T S S~ o 0 0 RSP 38

N TG T8 N S 1< o I = 38

B G O T o 151 =TT o B PP 38

2434 Callback related defiNItioNSccueeeiiiiiiiieeiie ettt et sreesteeeseaeestaeestaeesaaeesteesaseesssaeessaennns 39
2.4.3.4.2a PT_STD_GUI_STATE_CALLBACKcctttuuuiriiiiiirnnns s rrrsis s s ssrssss s s s rssss s s s s sssnnssssssees 39

244 SEATUS COCS ... ettt e et e et e et e e abe e et e e e abeeeabeeeabeeeabeeesbaeesbeeersaeessaeenseeenns 40

3. Handling Fingerprint Template........coo s 42
3.1 Initialize Smart Card to store the fingerprint templates ..., 42
3.2 Store the fingerprint template to the Smart Card..........cc.coooiii e 43
3.3 Verify the fingerprint in the TEM ... e s 43
3.4 Registering Callback FUNCHON..........cooiieieiiee e e e e e e e s eraaee s 43
3.5 GUI MESSAGE COUEScooiueiiiieiiiiii ettt ettt e et e e et e e e bb et e e et e e e e e abe e e anneas 45

4 Interface Function Prototypes (Smart Card) [Proprietary Driver Only]ccccccviinnnees 46
S T N @ © o= o SRS 46
o O 1 (o 1= TS PP ERRRRRRRNS 47
T N O =14 15 T= 1] o] o PSPPSR 47
N O =l o To ST T To] o OSSO PURRRRRRRN 49
45 AC_EXChANGEAPDUttt e bt e e e h et e e e en et e e e enbe e e e e aneeeeeaae 49
o I O €11 (]) (o TSRO PSRRI 50
A N O 7= 1@ o] 1o o SRR PRSP 51
5. Interface Function Prototypes (EEPROM) [Proprietary Driver Only]ccccceeriniiiinnns 53
5.1 AC_REAAEEPROM. ...ttt e sttt e e e ettt e e e e bt e e e et e e e e annee e e neeas 53
52 AC_WIEEEPROM.......oiiiiiiiie ittt ettt e et e e e et e e e et e e e s st e e e s e nnteeeeentaeaseansaeeeeanseeeansees 54
Appendix A: Table of Error Codes ... e s s e s s s s e s s e s e e e s s s s e s s s e e eesssess e essesssenne 55

© Advanced Card Systems Ltd. Page 3 of 56

AET63 API Guide version 1.7 February 2006

1. Introduction

This manual describes the use of TFM.dIl interface software to program the AET63 BioTRUSTKey. It is a set
of library functions implemented for the application programmers to operate the AET63 and the inserted
smart cards. Currently, it is supplied in the form of window 32-bit DLL (for Windows 98/2k/XP). It can be

programmed using the popular development tools like Visual C/C++, Visual Basic, Delphi, FoxPro, etc.

The AET63 BioTRUSTKey is connected to the PC via the USB interface.

Even though the hardware communication interface can be different, application programs can still be using
the same API (Application Programming Interface) for operating the smart card readers. Actually, the
purpose of using the TFM library is to provide the programmer with a simple and consistent interface over all
possible hardware. It is the responsibility of the TFM.dIl library to handle the communication details,
parameter conversions and error handling. The architecture of the TFM library can be visualized as the

following diagram:

Reader PC

Application Program

CardEasy

AET63 Driver Program
BioTRUSTKey TFM.dII

Operating System

Windows

usB Layer
Figure 1.1

© Advanced Card Systems Ltd. Page 4 of 56

AET63 API Guide version 1.7 February 2006

2. TFM.DLL

2.1 Overview

TFM.dIl is a set of high-level functions provided for the application software to use. It provides a consistent
application programming interface (TFM API) for the application to operate on the card reader and the
corresponding inserted card. TFM.dIl communicates with the AET63 BioTRUSTKey via the communication
port facilities provided by the operating system. TFM.dIl is supposed to be platform independent provided
that there is a minor modification on the communication module of the TFM.dIl to adapt to different operating

environments.

2.2 Communication Speed
The TFM.DLL library controls the communication speed between the reader and the PC. The

communication speed for the USB type of connection is running at 1.5Mbps.

2.3 TFM API — Smart Card Reader

The TEM.DLL Application Programming Interface (API) defines a common way of accessing the AET63
BioTRUSTKey. Application programs invoke TFM.DLL through the interface functions and perform
operations on the inserted card using AClI commands. The header files TFMAPLH, TFMERROR.H,
TFMTYPES.H and ACSR20.H, which contains all the function prototypes and macros described below, are

available for the program developer.

2.3.1 Interface Data Structure
The TFM.DLL API makes use of several data structures to pass parameters between application programs

and library driver. These data structures are defined in the header file acsr20.h and they are discussed

below:

2.3.1.1 AC APDU
typedef struct {

BYTE CLA;

BYTE INS;

BYTE P1l;

BYTE P2;

INT16 Lc;

INT16 Le;

BYTE DataIn[256];
BYTE DataOut[256];
WORD16 Status;

} AC APDU;

The AC_APDU data structure is used in the AC_ExchangeAPDU function for the passing of commands and
data information into the smart card. For MCU card (T=0, T=1) operation, these values are specific to the

smart card operating system. You must have the card reference manual before you can perform any valid

© Advanced Card Systems Ltd. Page 5 of 56

AET63 API Guide version 1.7 February 2006

operations on the card. Please notice that Lc represents the data length going into the card and Le

represents the data length expecting from the card.

Name Input/Output Description

CLA I Instruction Class

INS I Instruction Code

P1 I Parameter 1

P2 I Parameter 2

Lc I Length of command data (Dataln)
Le I/O Length of response data (DataOut)
Dataln I Command data buffer

DataOut 0] Response data buffer

Status 0] Execution status of the command

2.3.1.2 AC _SESSION
typedef struct {

BYTE CardType; // Card type selected
BYTE SCModule; // Selected security module.
//Use only when card type = AC_SCModule
BYTE ATRLen; // Length of the ATR
BYTE ATR[128]; // ATR string
BYTE HistLen; // Length of the Historical data
BYTE HistOffset; // Offset of the Historical data
// from the beginning of ATR
INT16 APDULenMax; // Max. APDU supported

} AC_SESSTON;

The AC_SESSION data structure is used in the AC_StartSession function call for the retrieval of ATR
information from the smart card. Before calling AC_StartSession, the program needs to specify the value of
CardType. After calling the function, the ATR string can be found in ATR field and the length is stored in
ATRLen.

Name Input/Output Description

CardType I The card type selected for operation (refer to Appendix
C for CardType)

SCModule I The security module selected for operation. (The value is

used only when card type = AC_SCModule)

ATRLen 0] Length of the ATR string

ATR 0] Attention to reset (ATR) string
HistLen 0] Obsolete field — not used anymore
HistOffset 0] Obsolete field — not used anymore
APDULenMax 0] Obsolete field - not used anymore

© Advanced Card Systems Ltd. Page 6 of 56

AET63 API Guide version 1.7 February 2006

2.3.1.3 AC _INFO
typedef struct {

INT16 nMaxC; // Maximum number of command data bytes
INT16 nMaxR; // Maximum number of data bytes that
// can be requested in a response
INTI16 CType; // The card types supported by the reader
BYTE CStat; // The status of the card reader
BYTE CSel; // The current selection of card type
BYTE szRev[10]; // The 10 bytes firmware type and
// revision code
INT16 nLibVer; // Library version
Long 1BaudRate;, // Current Running Baud Rate
} AC_INFO;

The AC_INFO data structure is used in the AC_GetInfo function call for the retrieval of reader-related

information. Their meanings are described as follows:

Name Input/Output | Description

nMaxC 0] The maximum number of command data byte (Dataln) that can

be accepted in the ExchangeAPDU command

nMaxR 0] The maximum number of response data byte (DataOut) that will

be appeared in the ExchangeAPDU command

CType 0] The card types supported by the reader

Cstat (0] The status of the card reader
Bit0 = card present (1) or absent (0)

Bit1 = card powered up (1) or powered down (0)

szRev[10] 0] The firmware revision code

nLibVer 0] Library version (e.g. 310 is equal to version 3.10)

© Advanced Card Systems Ltd. Page 7 of 56

AET63 API Guide version 1.7 February 2006

2.4 TFM API - Fingerprint Scanner

2.4.1 Type Declarations
TFM uses type declarations for convenient handling of the application source code.

Signed byte

typedef char PT CHAR;
Unsigned byte

typedef unsigned char PT BYTE;
Signed 2 bytes

typedef short PT SHORT;

Unsigned 2 bytes
typedef unsigned short PT WORD;

Signed 4 bytes
typedef long PT LONG;

Unsigned 4 bytes
typedef unsigned long PT DWORD;

Boolean value (zero, non-zero)
typedef unsigned long PT BOOL;

Return status of functions
typedef PT LONG PT STATUS;

Handle to a connection to the TFM. This is the connection between proxy and the physical TFM.
typedef PT DWORD PT TEFM;

Handle to a connection to a proxy
typedef PT DWORD PT CONNECTION;

Prototype of memory allocating function
typedef void* (PTAPI *PT MALLOC) (PT_DWORD Size);

Prototype of memory freeing function
typedef void (PTAPI *PT FREE) (void *Memblock);

2.4.2 Interface Data Structure
The TFM APl makes use of several data structures to pass parameters between application programs and

the library driver. These data structures are defined in the header file TFMTYPES.H and they are discussed

below:

2.4.2.1 PT GLOBAL INFO
The global information about this PerfectTrust implementation, especially the version info.

typedef struct pt global info {

PT DWORD ApiVersion;
PT DWORD Functionality;
PT DWORD Flags;

} PT_GLOBAL_INFO;

© Advanced Card Systems Ltd. Page 8 of 56

AET63 API Guide

version 1.7 February 2006

Name Input/Output | Description

ApiVersion o Version of TFM API. Highest byte = major version,
second highest byte = minor version, low word =
subversions.

Functionality (0] Bit mask, defining which blocks of functions are
supported (see PT_GIFUNC xxxx).

Flags 0] Additional flags (e.g. encryption strength), see
PT_GIFLAGS_xxxx.

2.4.2.2 PT DATA

This structure is used to associate any arbitrary long data block with the length information.

typedef struct pt data ({
PT DWORD Length;

PT BYTE Datal[l]l;
} PT DATA;
Name Input/Output | Description
Length 1/0 Length of the Data field in bytes
Data 1/0 The data itself, variable length
2.4.2.3 PT MEMORY FUNCS

This structure is used to hand over to PerfectTrust the set of memory allocation/freeing routines, which
will be then used for all dynamic memory management.

typedef struct pt memory funcs {
PT MALLOC pfnMalloc;
PT FREE pfnFree;

} PT_MEMORY FUNCS;

Name Input/Output | Description

PfnMalloc I Memory allocating function

PfnFree] Memory freeing function
2.4.24 PT BIR HEADER

The header of the BIR (Biometric Identification Record). This type is exactly equivalent to BioAPI's
BioAPI_BIR_HEADER. All the integer values in the header are little-endians to ensure portability
between different computers.

typedef struct pt bir header {
PT DWORD Length;

PT BYTE HeaderVersion;
PT BYTE Type;

PT WORD FormatOwner;
PT WORD FormatID;

PT CHAR Quality;

PT BYTE Purpose;

PT DWORD FactorsMask;
} PT BIR HEADER;

© Advanced Card Systems Ltd. Page 9 of 56

AET63 API Guide version 1.7 February 2006

2.4.2.5 PT BIR
A container for biometric data. BIR (Biometric Identification Record). It can be an enrolled template,

audit data etc. BIR consists of a header, followed by the opaque data and optionally by a signature. This
type is binary compatible with BioAPI's BioAPI_BIR. The only difference is, that in BioAPI_BIR the data
is divided into four separate memory blocks, while PT_BIR keeps all the data together.

typedef struct pt bir {

PT BIR HEADER Header;
PT BYTE Data[l];
} PT BIR;

2.4.2.6 PT INPUT BIR
A structure used to input a BIR to the API. Such input can be either the actual BIR data, or one of the

predefined handles to the template cache.

typedef struct pt input bir {
PT BYTE byForm;
union {
PT BIR *pBIR;
PT LONG 1S1lotNr;
PT BYTE abyReserved[20];
} InputBIR;
} PT_INPUT BIR;

Name Input/Output | Description

ByForm I Form of the input BIR

PBIR I Used when byForm = PT_FULLBIR INPUT
LSIotNr I Used when byForm = PT _SLOT INPUT
abyReserved | For future use

2.4.2.7 PT _INFO
A structure used by PTInfo to return status-independent information about TFM.

typedef struct pt info {

PT DWORD FwVersion;
PT DWORD FwMinNextVersion;
PT DWORD FwVariant;
PT DWORD FwFunctionality;
PT DWORD FwConfig;
PT DWORD Id;
PT DWORD AuthentifyId; // Should not be used
PT DWORD Usage;
PT DWORD SensorType;
PT WORD ImageWidth;
PT WORD ImageHeight;
PT DWORD MaxGrabWindow; // Should not be used
PT DWORD CompanionVendorCode;
} PT _INFO;
Name Input/Output | Description
FwVersion O Version of the TFM's firmware. Highest byte =
major version, second highest byte = minor version,

© Advanced Card Systems Ltd. Page 10 of 56

AET63 API Guide

version 1.7 February 2006

low word = subversions/revisions.

FwMinNextVersion 0 Minimal version required for future firmware update

FwVariant O Variant of firmware - see PT_FWVARIANT_xxxx
(E.g. variant with USB, variant with SIO etc.)

FwFunctionality 0] Blocks of functionality included in firmware. See
PT FWFUNC xxxx.

FwConfig 0] FW's configuration flags, set up during
manufacturing. See PT_FWCFG_xxxx.

Id (0] TFM ID. If used, allows to assign unique ID to
every TFM piece. Otherwise 0.

Authentifyld 0] ID of the Authentify group. Every TFM with the
same Authentify code belongs to the same
Authentify group. The PTAuthentify function is not
implemented in this version; therefore this
parameter should not be used or you may set
Authentifyld == 0.

Usage 0] Type of the reader in which the TFM is used. 0 =
unspecified usage.

SensorType 0 Type and version of sensor.

ImageWidth 0] Sensor image width

ImageHeight 0] Sensor image height (for strip sensor max. height)

MaxGrabWindow 0] Max. guaranteed length of the output data for
PTGrabWindow. The PTGrabWindow function is
not implemented in this version; therefore this
parameter should not be used.

CompanionVendorCode O Companion vendor code

2.4.2.8 PT SESSION CFG
typedef struct pt session cfg {
PT SECURITY LEVEL SecuritySetting;
PT ANTISPOOFING LEVEL AntispoofingLevel;

PT BOOL MultipleEnroll;

PT BOOL LatentDetect

PT BOOL SubSample;

PT BOOL SensorDisabling;

PT CALLBACK LEVEL CallbackLevel;

PT BOOL WakeUpByFinger;

PT DWORD WakeUpByFingerTimeout;
PT BYTE SubWindowArea;

PT BOOL WffUseHwDetection;

PT WORD WffFingerDownDelay;

PT WORD WffFingerUpDelay;

PT BOOL RecUseHwDetection;

PT WORD RecFingerDownDelay;

PT WORD RecFingerUpDelay;

PT WORD RecTerminationPolicy;
PT BOOL RecRemoveTopdown;

PT BOOL RecRemoveBottomup;

PT BOOL NavUseHwDetection;

PT WORD NavFingerDownDelay;

PT WORD NavFingerUpDelay;

PT WORD NavClickTimeMin;

PT WORD NavClickTimeMax;

PT WORD NavMovementDelay;

PT DWORD NavClickAllowedMovement;
PT WORD NavNavigationType;

PT WORD BioEnrollInputType;

PT WORD BioVerifyInputType;

PT WORD EnableScanQualityQuery;

} PT_SESSION CFG;

© Advanced Card Systems Ltd.

Page 11 of 56

AET63 API Guide

version 1.7 February 2006

Name Input/Output | Description

SecuritySetting I Security level for templates matching

AntispoofingLevel I Level of anti-spoofing

MultipleEnroll I Indicates whether or not enroliment should use
multiple finger images

LatentDetect I Indicates whether or not latent detection should be
activated

SubSample I Indicates whether or not extraction should sub-

sample images

SensorDisabling

I Indicates whether or not put sensor into sleep mode
after each biometric operation

CallbackLevel

| Indicates what amount of GUI callbacks is received
during biometric operations

WakeUpByFinger I If PT_TRUE, FM can be woken up from deep sleep
by a finger on sensor

WakeUpByFingerTimeout I Timeout for returning to standby after wake-up by
finger (in milliseconds)

SubWindowArea I Area of the subwindow in percents of the full area
used for extractor

WffUseHwDetection I Use Hardware finger detection

WiffFingerDownDelay I Timing for finger touch

WiffFingerUpDelay I Timing for finger lift

RecUseHwDetection I Use Hardware finger detection

RecFingerDownDelay I Timing for finger touch

RecFingerUpDelay | Timing for finger lift

I

RecTerminationPolicy

Defines the way, how end of finger scan is
determined

RecRemoveTopdown Remove striation from top
RecRemoveBottomup Remove striation from bottom
NavUseHwDetection Use Hardware finger detection
NavFingerDownDelay Timing for finger touch
NavFingerUpDelay Timing for finger lift

NavClickTimeMin

Minimum elapsed time to detect a click

NavClickTimeMax

Maximum elapsed time to detect a click

NavMovementDelay

Delay before movement detection

NavClickAllowedMovement

Maximum allowed movement for click

NavNavigationType

Navigation type

BioEnrollinputType

Reconstruction type for enroliment

BioVerifylnputType

Reconstruction type for verification

EnableScanQualityQuery

Bitmask of scan quality modes

2.4.2.9 PT FINGER LIST

typedef struct pt finger list ({

PT DWORD
struct {
PT LONG
PT DWORD
PT BYTE

NumFingers;

SlotNr;
FingerDatalength;
FingerData[PT MAX FINGER DATA LENGTH];

© Advanced Card Systems Ltd. Page 12 of 56

AET63 API Guide version 1.7 February 2006

} List([1];
} PT_FINGER LIST;

Name Input/Output | Description

NumFingers 0 Number of fingers in the list

SlotNr 0] Number of slot, where the finger is stored
FingerDatal.ength 0 Length of data associated with the finger
FingerData 0] Data associated with the finger

2.4.2.10 PT NAVIGATION CALLBACK
The navigation data passed to the PT_NAVIGATION_CALLBACK.

typedef struct pt navigation data
{

PT SHORT dx;

PT SHORT dy;

PT WORD signalBits;
} PT NAVIGATION DATA;

Name Input/Output | Description

Dx I Delta X since the last navigation data

Dy I Delta Y since the last navigation data
SignalBits | Information bitmask, see PT_NAVIGBITS xxxx

© Advanced Card Systems Ltd. Page 13 of 56

AET63 API Guide version 1.7 February 2006

2.4.3 Functions

2.4.3.1 Application General Functions

The Application General Functions allow initializing the library, creating and closing logical connections
to TFM, setting callbacks and performing other general operations.

2.4.3.1.a PTInitialize
The PTInitialize function initializes the API library. It must be called before any other function.

LONG PTInitialize(
PT MEMORY FUNCS *pMemoryFuncs
)

Parameters
pMemoryFuncs

Structure of pointers to the memory allocation and deallocation routines.

Return Values
Status code

2.4.3.1.b PTTerminate

The PTTerminate function terminates the API library. It must not be called while any connection is
still open. Usually, there is no need to call this function.

LONG PTTerminate (
void

)7

Parameters
None

Return Values
Status code

2.4.3.1.c PTGlobalInfo

The PTGloballnfo returns information about the API version and other global information
independent on any connection.

LONG PTGloballInfo(
PT GLOBAL INFO **ppGlobalInfo
);

Parameters
ppGlobalinfo

Address of a pointer, which will be set to point to a global info block. The global info
block is dynamically allocated by PerfectTrust and must be freed by the application.

© Advanced Card Systems Ltd. Page 14 of 56

AET63 API Guide version 1.7 February 2006

Return Values
Status code

2.4.3.1.d PTOpen
The PTOpen function opens the communication channel with the TFM.

PT STATUS PTOpen (

IN PT CHAR *pszDsn,

OUT PT CONNECTION *phConnection
);

Parameters
pszDsn
Zero-terminated ASCII string describing the FM connection parameters.

1. For opening the ACS TFM reader through ACS Proprietary driver, with smart card with
transparent file type, this should be used: “ACR30U=0 filetype=transparent”.

2. For opening the ACS TFM reader through ACS Proprietary driver, with smart card with
record file type, this should be used: “ACR30U=0 filetype=record”.

3. For opening the ACS TFM reader through PCSC system, with smart card with
transparent file type, this should be used:
“PCSC=0 sharemode=shared filetype=transparent”.

4. For opening the ACS TFM reader through PCSC system, with smart card with record file
type, this should be used:
“PCSC=0 sharemode=shared filetype=record”.

phConnection
Resulting connection handle. At the end of the connection, it should be closed using
PTClose. To close local connection you should call PTClose().

Return Values
Status code

2.4.3.1.e PTClose
The PTClose function closes a connection previously opened by PTOpen().

LONG PTClose (
PT CONNECTION hConnection
)7

Parameters
hConnection

Connection handle of the connection to be closed.

Return Values
Status code

2.4.3.1.f PTSetGUICallbacks

The PTSetGUICallbacks function sets the address of the callback routine to be called if any called
function involves displaying a biometric user interface. The callback functionality is described below.

LONG PTSetGUICallbacks (
PT CONNECTION hConnection,

© Advanced Card Systems Ltd. Page 15 of 56

AET63 API Guide version 1.7 February 2006

PT GUI STREAMING CALLBACK pfnGuiStreamingCallback,

void *pGuiStreamingCallbackCtx,
PT GUI STATE CALLBACK pfnGuiStateCallback,
void B *pGuiStateCallbackCtx
) ;
Parameters
hConnection

Connection handle.
pfnGuiStreamingCallback

A pointer to an application callback to deal with the presentation of biometric
streaming data. Reserved for future use, currently not implemented. Use NULL for
this parameter.

pGuiStreamingCallbackCtx

A generic pointer to context information provided by the application that will be
presented on the callback. Reserved for future use, currently not implemented. Use
NULL for this parameter.

pfnGuiStateCallback
A pointer to an application callback to deal with GUI state changes.
pGuiStateCallbackCtx

A generic pointer to context information provided by the application that will be
presented on the callback.

Return Values
Status code

Remarks
Application has three basic options:

Use pfnGuiStateCallback == NULL. In this case, no user interface will be displayed.

Use pfnGuiStateCallback == PT_STD_GUI_STATE_CALLBACK. This will display the
standard PerfectTrust built-in user interface. In this variant pGuiStateCallbackCtx can have
the value of the window handle to the window, which should serve as the parent for the Ul.
It could be NULL if the Ul windows should have no parent.

Use pfnGuiStateCallback == your own callback. In this case your callback will be
responsible for displaying the user interface.

The default settings before the first call are:
pfnGuiStateCallback == PT_STD_GUI_STATE_CALLBACK
and pGuiStateCallbackCtx == NULL.

Example Code

HWND hWnd;
PT STATUS status;

hWnd = GetActiveWindow () ;

© Advanced Card Systems Ltd. Page 16 of 56

AET63 API Guide version 1.7 February 2006

status = PTSetGUICallbacks (hConnection, NULL, NULL,
PT STD GUI STATE CALLBACK, (void *)hWnd) ;

2.4.3.1.g PTFree

The PTFree function frees memory block using deallocation function passed to API by PTlnitialize()
call. This function may be used for releasing structures allocated by other API functions.

VOID PTFree (
void *memblock
);

Parameters
memblock
Supplies the memory block to be released.

Return Values
None

2.4.3.2 PerfectTrust Biometric functions

This section has been strongly inspired by the BioAPI standard. The function calls are practically the
same, except for different naming of the parameter types. BioAPI uses its own type definitions, which
are too specialized to be used in PerfectTrust. Also some parameters were simplified and some handles
replaced by pointers to binary data blocks.

2.4.3.2.a PTCapture

The PTCapture function scans the live finger and processes it into a template. The last template
obtained through PTCapture will be remembered throughout the session and can be used by
biometric matching functions. In addition, it can be optionally returned to the caller. This function can
call GUI callbacks.

LONG PTCapture (
PT CONNECTION hConnection,
PT BYTE byPurpose,
PT BIR **ppCapturedTemplate,
PT LONG 1Timeout,
PT BIR **ppAuditData,
PT DATA *pSignData,
PT DATA **ppSignature

Parameters
hConnection

Handle of the connection to TFM.
byPurpose

Purpose of the enroliment. Use one of the PT_PURPOSE_xxxx values.
ppCapturedTemplate

Address of the pointer, which will be set to point to the resulting template (BIR). The
template has to be discarded by a call to PTFree(). If the template should be only
remembered for use of next functions, leave this parameter NULL

© Advanced Card Systems Ltd. Page 17 of 56

AET63 API Guide version 1.7 February 2006

ITimeout
Timeout in milliseconds. "-1" means default timeout.
ppAuditData

Optional address of the pointer, which will be set to point to the resulting audit data
(BIR). The audit data has to be discarded by a call to PTFree(). The resulting value
can be also PT_UNSUPPORTED_BIR (audit operation not supported) and
PT_INVALID_BIR (no audit data available). The audit data contains the ID of the
TFM, the image of the finger used during enrollment and other information.
Depending on the settings of the TFM, the fingerprint image part of the audit data
may be encrypted using the public key KAUDITE1, KAUDITE2, or by both. Use
functions PTAuditKey() and PTAuditData() to get the plaintext fingerprint image
audit data.

pSignData

Optional data to be signed together with the audit data (see ppSignature). It is
recommended to supply unique sign data (e.g. a time stamp) for every sign
operation to prevent a replay attack.

ppSignature

When not NULL, it represents the address of the pointer, which will be set to point
to the resulting signature. The signature has to be discarded by a call to PTFree().
The signature is the digital signature of the AuditData concatenated with the
SignData created using the TFM's private signing asymmetric key KSIGN. The
signature can be verified anytime using the PTVerifySignature function.

Return Values
Status code

2.4.3.2.b PTEnroll

The PTEnroll function scans the live finger once or several times, depending on the session
settings, and combines the images into one enroliment template. The last template obtained through
PTEnroll will be remembered throughout the session and can be used by biometric matching
functions. This function can call GUI callbacks.

LONG PTEnroll (
PT CONNECTION hConnection,

PT BYTE byPurpose,
PT INPUT BIR *pStoredTemplate,
PT BIR **ppNewTemplate,
PT LONG *plSlotNr,
PT DATA *pPayload,
PT LONG 1Timeout,
PT BIR **ppAuditData,
PT DATA *pSignData,
PT DATA **ppSignature
)i
Parameters
hConnection

Handle of the connection to TFM
byPurpose

Purpose of the enroliment. Use one of the PT_PURPOSE_xxxx values.

© Advanced Card Systems Ltd. Page 18 of 56

AET63 API Guide version 1.7 February 2006

pStoredTemplate

Template to be adapted. Reserved for future use. Currently not implemented.
Always use NULL.

ppNewTemplate

Address of the pointer, which will be set to point to the resulting template (BIR). The
template has to be discarded by a call to PTFree(). If the template should be stored
only in TFM's non-volatile memory, leave this parameter NULL.

plSIotNr

Pointer to a variable which receives slot number (0..N-1) where the template was
stored. If the value is NULL, template is not stored on TFM. pPayload Data to be
embedded into the resulting template. Payload data is an output parameter from
PTVerify and PTVerifyEx when successful match is achieved.

ITimeout
Timeout in milliseconds. "-1" means default timeout.
ppAuditData

Optional address of the pointer, which will be set to point to the resulting audit data
(BIR). The audit data has to be discarded by a call to PTFree(). The resulting value
can be also PT_UNSUPPORTED_BIR (audit operation not supported) and
PT_INVALID_BIR (no audit data available). The audit data contains the ID of the
TFM, the image of the finger used during enrollment and other information.
Depending on the settings of the TFM, the fingerprint image part of the audit data
may be encrypted using the public key KAUDITE1, KAUDITEZ2, or by both. Use
functions PTAuditKey() and PTAuditData() to get the plaintext fingerprint image
audit data.

pSignData

Optional data to be signed together with the audit data (see ppSignature). It is
recommended to supply unique sign data (e.g. a time stamp) for every sign
operation to prevent a replay attack.

ppSignature

When not NULL, it represents the address of the pointer, which will be set to point
to the resulting signature. The signature has to be discarded by a call to PTFree().
The signature is the digital signature of the AuditData concatenated with the
SignData created using the TFM's private signing asymmetric key KSIGN. The
signature can be verified anytime using the PTVerifySignature() function.

Return Values
Status code

© Advanced Card Systems Ltd. Page 19 of 56

AET63 API Guide version 1.7 February 2006

2.4.3.2.c PTEnrolISC

The PTEnrolISC function scans the live finger once depending on the session settings and store it
to the smart card. The last template obtained through PTEnrollSC will be remembered throughout
the session and can be used by biometric matching functions. This function can call GUI callbacks.

LONG PTEnrollSC(

PT CONNECTION hConnection,

PT BYTE recordNo,

PT BYTE byPurpose,

PT INPUT BIR *pStoredTemplate,

PT DATA *pPayload,

PT LONG 1Timeout,

PT BIR **ppAuditData,

PT DATA *pSignData,

PT DATA **ppSignature
);

Parameters

Please refer to PTEnroll() function above.

Return Values
Status Code

2.4.3.2.d PTEnrollSC3

The PTEnrollISC3 function scans the live finger three times,
enrollment template and stores the template into smart card.

combines the images into one

PT STATUS PTEnrollSC3 (

IN PT CONNECTION hConnection,

IN PT BYTE SCRecordNo,

IN PT BYTE byPurpose,

IN PT INPUT BIR *pStoredTemplate,
IN PT DATA *pPayload,

IN PT LONG 1Timeout,

OUT PT BIR **ppAuditData,

IN PT DATA *pSignData,

OUT PT_ DATA **ppSignature

Parameters
hConnection
Handle to the connection to TFM

SCRecordNo

The record number to be stored in the smart card. It starts with value 0.
ByPurpose

Purpose of the enroliment. Use one of the PT_PURPOSE_xxxx values

PStoredTemplate
Template to be adapted.
Always use NULL.

Reserved for future use. Currently not implemented.

Ppayload
Data to be embedded into the resulting template.
parameter when successful match is achieved.

Payload data is an output

© Advanced Card Systems Ltd.

Page 20 of 56

AET63 API Guide version 1.7 February 2006

Ltimeout
Timeout in milliseconds. “-1” means default timeout. Timeout is used to limit the
waiting for acceptable finger; it does not include the time needed for further image
and template processing.

PpAuditData
Reserved, use NULL.

pSignData
Reserved, use NULL

ppSignature
Reserved, use NULL

Return Values
Status code

2.4.3.2.e PTVerifyMatch

The PTVerifyMatch function matches the supplied captured template against the supplied
enrollment template. This function does not scan live finger and therefore does not call GUI
callbacks.

LONG PTVerifyMatch (

PT CONNECTION hConnection,
PT LONG *plMaxFARRequested,
PT LONG *plMaxFRRRequested,
PT BOOL *pboFARPrecedence,
PT INPUT BIR *pCapturedTemplate,
PT INPUT BIR *pStoredTemplate,
PT BIR **ppAdaptedTemplate,
PT BOOL *pboResult,
PT LONG *plFARAchieved,
PT LONG *plFRRAchieved,
PT DATA **ppPayload
) ;
Parameters
hConnection
Handle of the connection to TFM
pIMaxFARRequested
Max. FAR requested by the caller
pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL.
pboFARPrecedence

If both FAR and FRR are provided, this parameter decides which of them takes
precedence: PT_TRUE -> FAR, PT_FALSE -> FRR.
pCapturedTemplate
The template to verify - BIR data or one of the predefined handles. If NULL, the
result of the last PTCapture or PTEnroll will be used.
pStoredTemplate
The template to be verified against - BIR data or one of the predefined handles.
ppAdapted Template
Address of the pointer, which will be set to point to a template created by adapting
the pStoredTemplate. Reserved for future use, currently not implemented. Always
use NULL.
pboResult
The result: Match/no match
pIFARAchieved
The value of FAR achieved

© Advanced Card Systems Ltd. Page 21 of 56

AET63 API Guide version 1.7 February 2006

plIFRRAchieved
The value of the FRR achieved

ppPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the pStoredTemplate. Payload data is available only when successful
match is achieved.

Return Values
Status code

2.4.3.2.f PTVerify

The PTVerify function scans the live finger or uses the last captured finger data and tries to match it
against the supplied enrollment template. If the function scans a live finger, the template obtained
will be remembered throughout the session and can be used by other biometric matching functions.
This function can call GUI callbacks (unless boCapture is FALSE);

LONG PTVerify (
PT CONNECTION hConnection,
PT LONG *plMaxFARRequested,
PT LONG *plMaxFRRRequested,
PT BOOL *pboFARPrecedence,
PT INPUT BIR *pStoredTemplate,
PT BIR **ppAdaptedTemplate,
PT BOOL *pboResult,
PT LONG *plFARAchieved,
PT LONG *plFRRAchieved,
PT DATA **ppPayload,
PT LONG 1Timeout,
PT BOOL boCapture,
PT BIR **ppAuditData,
PT DATA *pSignData,
PT DATA **ppSignature

)

Parameters
hConnection
Handle of the connection to TFM.
pIMaxFARRequested
Max. FAR requested by the caller.
pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL.
pboFARPrecedence
If both FAR and FRR are provided, this parameter decides which of them takes
precedence: PT_TRUE -> FAR, PT_FALSE -> FRR.
pStoredTemplate
The template to be verified against - BIR data or one of the predefined handles.
ppAdaptedTemplate
Address of the pointer, which will be set to point to a template created by adapting
the pStoredTemplate. Reserved for future use, currently not implemented. Always
use NULL.
pboResult
The result: Match/no match.
plFARAchieved
The value of FAR achieved.
plIFRRAchieved
The value of the FRR achieved.

© Advanced Card Systems Ltd. Page 22 of 56

AET63 API Guide version 1.7 February 2006

ppPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the pStoredTemplate. Payload data is available only when successful
match is achieved.

ITimeout
Timeout in milliseconds. "-1" means default timeout.

boCapture
If PT_TRUE, PTVerify at first captures live fingerprint. If PT_FALSE, result of the
last finger capturing function (e.g. PTCapture or PTEnroll) will be used.

ppAuditData
Optional address of the pointer, which will be set to point to the resulting audit data
(BIR). The audit data has to be discarded by a call to PTFree(). The resulting value
can also be PT_UNSUPPORTED_BIR (audit operation not supported) and
PT_INVALID_BIR (no audit data available). The audit data contains the ID of the
TFM, the image of the live finger used during verification and other information.
Depending on the settings of the TFM, the fingerprint image part of the audit data
may be encrypted using the public key KAUDITV1, KAUDITVZ2, or by both. Use
functions PTAuditKey() and PTAuditData() to get the plaintext fingerprint image
audit data.

pSignData
Optional data to be signed together with the audit data (see ppSignature). It is
recommended to supply unique sign data (e.g. a time stamp) for every sign
operation to prevent a replay attack.

ppSignature
When not NULL, it represents the address of the pointer, which will be set to point
to the resulting signature. The signature has to be discarded by a call to PTFree().
The signature is the digital signature of the AuditData concatenated with the
pSignData created using the TFM's private signing asymmetric key KSIGN. The
signature can be verified anytime using the PTVerifySignature function.

Return Values
Status code

2.4.3.2.g PTVerifySC

The PTVerifySC function scans the live finger or uses the last captured finger data and try to match
it against the fingerprint template stored in the smart card.

PT STATUS PTVerifySC (
IN PT CONNECTION hConnection,
IN PT LONG *pIMaxFARRequested,
IN PT LONG *pIMaxFRRRequested,
IN PT BOOL *pboFARPrecedence,
IN PT BYTE SCRecordNo,
OUT PT BIR **ppAdaptedTemplate,
OUT PT BOOL *pboResult,
OUT PL LONG *pIFARAchieved,
OUT PT LONG *pIFRRAchieved,
OUT PT DATA **ppPayload,
IN PT LONG l1lTimeout,
IN PT BOOL boCapture,
OUT PT BIR **ppAuditData,
IN PT DATA *pSignData,
OUT PT DATA **ppSignature

Parameters
hConnection
Handle to the connection to TFM

© Advanced Card Systems Ltd. Page 23 of 56

AET63 API Guide version 1.7 February 2006

pIMaxFARRequested
Max. FAR requested by the caller.

pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL

pboFARPrecedence

If both FAR and FRR are provided, this parameter decides which of them takes
precedence.

PT_TRUE->FAR, PT_FALSE->FRR.

SCRecordNo
The record number to be stored in the smart card. It starts with value 0.

ppAdaptedTemplate
Reserved for future use, always use NULL

pboResult
The result: Match/No match

plFARAchieved
The value of the FAR achieved.

pIFRRAchieved
The value of the FRR achieved.

ppPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the StoredTemplate. Payload data is available only when successful
match is achieved.

ITimeout
Timeout in milliseconds. “1” means default timeout. Timeout is used to limit the
waiting for acceptable finger; it does not include the time needed for further image
and template processing.

boCapture
If PT_TRUE, PTVerifySC at first captures live fingerprint. If PT_FALSE, result of
the last finger capturing function will be used.

ppAuditData
Reserved, use NULL.

pSignData
Reserved, use NULL.

ppSignature
Reserved, use NULL.

Return Values
Status code

2.4.3.2.h PTVerifySCAIll

The PTVerifySCAII function scans the live finger or uses the last captured finger data and tries to
match it against the entire fingerprint templates stored in the smart card.

PT STATUS PTVerifySCALl (
IN PT CONNECTION hConnection,

© Advanced Card Systems Ltd. Page 24 of 56

AET63 API Guide version 1.7 February 2006

IN PT LONG *pIMaxFARRequested,
IN PT LONG *pIMaxFRRRequested,
IN PT BOOL *pboFARPrecedence,
IN PT BYTE NumRecord,

OUT PT BIR **ppAdaptedTemplate,
OUT PT BOOL *pboResult,

OUT PL LONG *pIFARAchieved,
OUT PT LONG *pIFRRAchieved,
OUT PT DATA **ppPayload,

IN PT LONG l1Timeout,

IN PT BOOL boCapture,

OUT PT BIR **ppAuditData,

IN PT DATA *pSignData,

OUT PT DATA **ppSignature,

OUT PT BYTE *pRecordNo

Parameters
hConnection
Handle to the connection to TFM

pIMaxFARRequested
Max. FAR requested by the caller.

pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL

pboFARPrecedence
If both FAR and FRR are provided, this parameter decides which of them takes
precedence.
PT_TRUE->FAR, PT_FALSE->FRR.

NumRecord
The number of records stored in the smart card. It will do the verification from
record 0 to record [NumRecord - 1].

ppAdaptedTemplate
Reserved for future use, always use NULL

pboResult
The result: Match/No match

plFARAchieved
The value of the FAR achieved.

pIFRRAchieved
The value of the FRR achieved

PpPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the StoredTemplate. Payload data is available only when successful
match is achieved.

LTimeout
Timeout in milliseconds. “1” means default timeout. Timeout is used to limit the
waiting for acceptable finger; it does not include the time needed for further image
and template processing.

boCapture
If PT_TRUE, PTVerifySCAIl at first captures live fingerprint. If PT_FALSE, result of
the last finger capturing function will be used.

© Advanced Card Systems Ltd. Page 25 of 56

AET63 API Guide version 1.7 February 2006

ppAuditData
Reserved, use NULL.

pSignData
Reserved, use NULL.
ppSignature
Reserved, use NULL.

pRecordNo
The record number that matched the scanned or last finger captured.

Return Values
Status Code

2.4.3.2.i PTVerifyEx

The PTVerifyEx function scans the live finger or uses the last captured finger data and tries to
match it against the set of supplied enroliment templates. If the function scans live finger, the
template obtained will be remembered throughout the session and can be used by other biometric
matching functions. Return the index of the best matching template or -1 if no match.

This is an extension to BioAPI. Its main purpose is to be able to match user's finger against all his
enrolled fingers (i.e. up to 10 fingers) without the necessity to ask user several times to scan his

finger.
LONG PTVerifyEx (
PT CONNECTION hConnection,
PT LONG *plMaxFARRequested,
PT LONG *plMaxFRRRequested,
PT BOOL *pboFARPrecedence,
PT INPUT BIR *pStoredTemplates,
PT BYTE byNrTemplates,
PT BIR **ppAdaptedTemplate,
PT SHORT *pshResult,
PT LONG *plFARAchieved,
PT LONG *plFRRAchieved,
PT DATA **ppPayload,
PT LONG 1Timeout,
PT BOOL boCapture,
PT BIR **ppAuditData,
PT DATA *pSignData,
PT DATA **ppSignature
)i
Parameters
hConnection
Handle of the connection to TFM.
plMaxFARRequested
Max. FAR requested by the caller
pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL.
pboFARPrecedence

If both FAR and FRR are provided, this parameter decides which of them takes
precedence: PT_TRUE -> FAR, PT_FALSE -> FRR.

pStoredTemplates
An array of templates to be verified against - BIR data or one of the predefined
handles.

byNrTemplates
Number of templates in pStoredTemplates

© Advanced Card Systems Ltd. Page 26 of 56

AET63 API Guide version 1.7 February 2006

ppAdaptedTemplate
Address of the pointer, which will be set to point to a template created by adapting
the pStoredTemplate. Reserved for future use, currently not implemented. Always
use NULL.

pshResult
The result: The zero-based index of the best matching template or -1 if no match.

pIFARAchieved
The value of FAR achieved.

plIFRRAchieved
The value of the FRR achieved.

ppPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the pStoredTemplate. Payload data is available only when successful
match is achieved.

ITimeout
Timeout in milliseconds. "-1" means default timeout.

boCapture
If PT_TRUE, PTVerifyEx at first captures live fingerprint.
If PT_FALSE, result of the last finger capturing function (e.g. PTCapture or
PTEnroll) will be used.

ppAuditData
Optional address of the pointer, which will be set to point to the resulting audit data
(BIR). The audit data has to be discarded by a call to PTFree(). The resulting value
can also be PT_UNSUPPORTED_BIR (audit operation not supported) and
PT_INVALID_BIR (no audit data available). The audit data contains the ID of the
TFM, the image of the live finger used during verification and other information.
Depending on the settings of the TFM, the fingerprint image part of the audit data
may be encrypted using the public key KAUDITV1, KAUDITV2, or by both. Use
functions PTAuditKey() and PTAuditData() to get the plaintext fingerprint image
audit data.

pSignData
Optional data to be signed together with the audit data (see ppSignature). It is
recommended to supply unique sign data (e.g. a time stamp) for every sign
operation to prevent a replay attack.

ppSignature
When not NULL, it represents the address of the pointer, which will be set to point
to the resulting signature. The signature has to be discarded by a call to PTFree().
The signature is the digital signature of the pAuditData concatenated with the
pSignData created using the TFM's private signing asymmetric key KSIGN. The
signature can be verified anytime using the PTVerifySignature function.

Return Values
Status code

2.4.3.2.j PTVerifyAll

The PTVerifyAll function scans the live finger or uses the last captured finger data and tries to
match it against the templates stored in TFM's non-volatile memory. If the function scans live finger,
the template obtained will be remembered throughout the session and can be used by other
biometric matching functions. Returns the slot of the best matching template or -1 if no match.

This is an extension to BioAPI. Its main purpose is to be able to match user's finger against all the
enrolled templates in the TFM's database, but without the complexity of the heavyweight BioAPI
database mechanism. This is not a real one-to-many matching, but one-to-few matching.

LONG PTVerifyAll (
PT CONNECTION hConnection,
PT LONG *plMaxFARRequested,
PT LONG *plMaxFRRRequested,
PT BOOL *pboFARPrecedence,
PT BIR **ppAdaptedTemplate,

© Advanced Card Systems Ltd. Page 27 of 56

AET63 API Guide version 1.7 February 2006

PT LONG *plResult,
PT LONG *plFARAchieved,
PT LONG *plFRRAchieved,
PT DATA **ppPayload,
PT LONG 1Timeout,
PT BOOL boCapture,
PT BIR **ppAuditData,
PT DATA *pSignData,
PT DATA **ppSignature

) i

Parameters
hConnection
Handle of the connection to TFM
plMaxFARRequested
Max. FAR requested by the caller
pIMaxFRRRequested
Max. FRR requested by the caller. Optional, can be NULL.

pboFARPrecedence
If both FAR and FRR are provided, this parameter decides which of them takes
precedence: PT_TRUE -> FAR, PT_FALSE -> FRR.

ppAdaptedTemplate
Address of the pointer, which will be set to point to a template created by adapting
the pStoredTemplate. Reserved for future use, currently not implemented. Always
use NULL.

plResult
The result: The zero-based index of the best matching template or -1 if no match.

plFARAchieved
The value of FAR achieved

pIFRRAchieved
The value of the FRR achieved

ppPayload
Address of the pointer, which will be set to point to the payload data, originally
embedded in the pStoredTemplate. Payload data is available only when successful
match is achieved.

ITimeout
Timeout in milliseconds. "-1" means default timeout.

boCapture
If PT_TRUE, PTVerifyEx at first captures live fingerprint. If PT_FALSE, result of the
last finger capturing function (e.g. PTCapture or PTEnroll) will be used.

ppAuditData
Optional address of the pointer, which will be set to point to the resulting audit data
(BIR). The audit data has to be discarded by a call to PTFree(). The resulting value
can also be PT_UNSUPPORTED_BIR (audit operation not supported) and
PT_INVALID_BIR (no audit data available). The audit data contains the ID of the
TFM, the image of the live finger used during verification and other information.
Depending on the settings of the TFM, the fingerprint image part of the audit data
may be encrypted using the public key KAUDITV1, KAUDITV2, or by both. Use
functions PTAuditKey() and PTAuditData() to get the plaintext fingerprint image
audit data.

pSignData
Optional data to be signed together with the audit data (see ppSignature). It is
recommended to supply unique sign data (e.g. a time stamp) for every sign
operation to prevent a replay attack.

ppSignature
When not NULL, it represents the address of the pointer, which will be set to point
to the resulting signature. The signature has to be discarded by a call to PTFree().
The signature is the digital signature of the pAuditData concatenated with the

© Advanced Card Systems Ltd. Page 28 of 56

AET63 API Guide version 1.7 February 2006

pSignData created using the TFM's private signing asymmetric key KSIGN. The
signature can be verified anytime using the PTVerifySignature function.

Return Values
Status code

2.4.3.2.k PTDetectFingerEx

The PTDetectFingerEx function verifies if there is a finger on the sensor. If Timeout is nonzero, the
function waits for the specified time interval until the required conditions are met.

This function is an extension to BioAPI. BioAPI handles finger detection through MODULE_EVENT
events. However, this mechanism is not suitable for implementation on FM (it requires a possibility
to send out asynchronous events, while FM is purely slave device). If needed, a BioAPIl-compatible
event behavior can be built using the PTDetectFingerEx function, but the implementation will be
inefficient. PTDetectFingerEx is a superset of an obsolete function PTDetectFinger, which was
used in previous versions of FM. PTDetectFinger is equivalent to

PTDetectFingerEx (hConnection, ITimeout, PT_DETECT _ACCEPTABLE | PT_DETECT_GUI).

LONG PTDetectFingerEx (
PT_CONNECTION hConnection,
PT LONG 1Timeout,

PT DWORD dwFlags
);
Parameters
hConnection
Handle of the connection to TFM
ITimeout

Timeout in milliseconds. "-1" means default timeout. "0" is an acceptable value for

this function, it means "test if the current state meets the required conditions".
dwFlags

Bit mask determining the behavior of the function and the conditions for which the

function waits.

Return Values
Status code

2.4.3.2.1 PTStoreFinger

The PTStoreFinger function stores given fingerprint template in the selected slot in the non-volatile
memory of the TFM. If pTemplate is NULL, it only clears the slot.

This function is an extension to BioAPl. The standard BioAPI interface for this functionality are the
database functions (DbStoreBIR, DbGetBIR etc.). However, this interface is too complicated for the
TFM's needs.

The template cache consists of a predefined number of "slots". The slots are numbered
0..N-1 and accessible through setting byForm field in the PT_INPUT_BIR to
PT_SLOT_INPUT.

The "N" depends on the model of the TFM and can be found using the PTInfo() call. Please note
that the real number of templates storable in TFM is further limited by the available memory and can
be therefore lower than "N".

LONG PTStoreFinger (
PT_CONNECTION hConnection,
PT INPUT BIR *pTemplate,

PT LONG *plSlotNr
);

© Advanced Card Systems Ltd. Page 29 of 56

AET63 API Guide version 1.7 February 2006

Parameters

hConnection
Handle of the connection to TFM

pTemplate
Template (BIR) to be stored in the template cache

plISIotNr
Pointer to a variable which receives slot number (0..N-1) where the template was
stored. If the value is NULL, the template is not stored.

Return Values
Status code

2.4.3.2.m PTDeleteFinger

The PTDeleteFinger function deletes fingerprint template stored in the selected slot in the non-
volatile memory of the TFM.

This function is an extension to BioAPI. The standard BioAPI interfaces for this functionality are the
database functions (DbStoreBIR, DbGetBIR etc.). However, this interface is too heavyweight for
the TFM's needs.

LONG PTDeleteFinger (
PT_CONNECTION hConnection,
PT_LONG 1S1lotNr

);

Parameters
hConnection
Handle to the connection to TFM
ISIotNr
Number of slot to delete (0..N-1)

Return Values
Status code

2.4.3.2.n PTDeleteAllFingers

The PTDeleteAllFingers function deletes all fingerprint templates stored in slots in the non-volatile
memory of the TFM.

This function is an extension to BioAPI. The standard BioAPI interfaces for this functionality are the
database functions (DbStoreBIR, DbGetBIR etc.). However, this interface is too complicated for the
TFM's needs.

LONG PTDeleteAllFingers (
PT CONNECTION hConnection

)7
Parameters
hConnection
Handle to the connection to TFM

Return Values
Status code

© Advanced Card Systems Ltd. Page 30 of 56

AET63 API Guide version 1.7 February 2006

2.4.3.2.0 PTSetFingerData

The PTSetFingerData function assigns an additional application data to a finger template stored in
TFM's non-volatile memory.

LONG PTSetFingerData (
PT CONNECTION hConnection,
PT LONG 1SlotNr,
PT DATA “*pFingerData

);

Parameters
hConnection
Handle of the connection to TFM

ISlotNr
The slot number of the template to be associated with data.

pFingerData
The data to be stored together with the template. If the data length is zero, the
application data associated with given fingerprint will be deleted

Return Values
Status code

2.4.3.2.p PTGetFingerData

The PTGetFingerData function reads the additional application data associated with a finger
template stored in TFM's non-volatile memory.

LONG PTGetFingerData (
PT CONNECTION hConnection,
PT LONG 1SlotNr,
PT DATA **ppFingerData

) i

Parameters
hConnection
Handle of the connection to TFM
ISlotNr
The slot number of the template whose application data should be read.
ppFingerData
Address of the pointer, which will be set to point to the application data associated
with given fingerprint. If no data are associated with the fingerprint, the result will be
a data block with zero length. The data has to be freed by a call to PTFree.

Return Values
Status code

2.4.3.2.q PTListAllFingers

The PTListAllFingers function returns list of all fingers stored in the TFM's non-volatile memory
together with their associated application data.

LONG PTListAllFingers (

PT CONNECTION hConnection,
PT FINGER LIST **ppFingerList
);
Parameters
hConnection

Handle of the connection to TFM.

© Advanced Card Systems Ltd. Page 31 of 56

AET63 API Guide version 1.7 February 2006

ppFingerList
Address of the pointer, which will be set to point to the list of stored fingerprints and
their associated data. The data has to be freed by a call to PTFree.

Return Values
Status code

2.4.3.2.r PTCalibrate
The PTCalibrate function calibrates the fingerprint sensor to suite best to the given user. The
calibration data will be stored in NVM and used for all the following biometric operations, in the
current and future connections (communication sessions).

The PTCalibrate function is currently used for strip sensors (ESS) only.

The standard calibration (PT_CALIB_TYPE_STANDARD) is an interactive operation. The user will
be prompted to put, lift or swipe his finger. This feedback will be communicated using the GUI
callbacks. The success of this operation is therefore essential to enable and use the GUI callbacks.
If the CallbackLevel member of the session configuration is set to CALLBACKS_NONE,
PTCalibrate will directly fail.

The GUI callbacks are also the only way to interrupt this operation. If the host fails to use callbacks,
the only way to regain control over FM is to close and reopen the connection (communication
session).

LONG PTCalibrate (
PT_CONNECTION hConnection,

PT DWORD dwType
)7
Parameters
hConnection
Handle of the connection to TFM
dwType

Type of calibration operation to be performed.

Return Values
Status code

2.4.3.2.s PTNavigate

The PTNavigate function switches FM to navigation mode (a.k.a. biometric mouse). In this mode,
FM will provide navigation info to the host.

LONG PTNavigate (
PT CONNECTION hConnection,
PT LONG 1lEventPeriod,
PT NAVIGATION CALLBACK pfnCallback,

void *pNavigationCallbackCtx
)7
Parameters
hConnection
Handle of the connection to FM
IEventP eriod

Delay in milliseconds between sending navigation data from FM. FM will send one
packet per period with all the navigation data accumulated over the period. If
I[EventPeriod is set to "-1", FM will use an on-demand mode.

© Advanced Card Systems Ltd. Page 32 of 56

AET63 API Guide version 1.7 February 2006

pfnCallback
Callback function, called every time when a navigation data packet arrives to the
host.

pNavigationCallbackCtx
A generic pointer to context data. This pointer will be supplied to the callback
function every time it is called.

Return Values
Status Code

Remarks
During the PTNavigate call, the FM sends periodically packets with navigation data to the
host. The arrived packets trigger calling the pfnCallback to deliver the data to the
application. Please note that a new callback will not be executed until the current returns. If
the callback processing takes too long, some navigation data may be lost. Also other
communication errors may lead to a lost navigation data - due to the nature of navigation, it
makes no sense to use error-correcting protocol.

If IEventPeriod = -1, FM will use on-demand mode. In this mode, FM at the beginning sends
one navigation data packet and then waits with sending next navigation data until it receives
a request from the host. The request is sent every time the pfnCallback function on the host
returns. This mode is suitable for host applications with slow callback processing. It protects
against losing navigation data due to an overrun.

PTNavigate will finish when the pfnCallback returns with cancel request value. Due to
asynchronous communication the host may still receive a few navigation callbacks after the
cancel was requested.

2.4.3.2.t PTClickCalibrate

The PTClickCalibrate function regulates the navigation behavior for the given user, especially the
recognition of clicking (tapping). The calibration data will be stored in NVM and used for all the
following biometric operations, in the current and future connections (communication sessions).

LONG PTClickCalibrate (
PT CONNECTION hConnection,
PT DWORD dwType,
PT LONG 1lEventPeriod,
PT NAVIGATION CALLBACK pfnCallback,

void *pNavigationCallbackCtx
);
Parameters
hConnection
Handle of the connection to FM
dwType

The type of the calibration operation. For successful calibration, PTClickCalibrate
has to be called several times with the specified sequence of types. After the last
call of the sequence, the calibration will be completed and effective. To cancel the
effect of PTClickCalibrate and reset the calibration to the factory default, use value
PT_CLICKCALIB_RESET. In this case, no navigation callbacks are called and the
function returns immediately.

IEventPeriod
Delay in milliseconds between sending navigation data from FM. FM will send one
packet per period with all the navigation data accumulated over the period. If
I[EventPeriod is set to "-1", FM will use an on-demand mode.

pfnCallback
Callback function, called every time a navigation data packet arrives to the host.

pNavigationCallbackCtx
A generic pointer to context data. This pointer will be supplied to the callback
function every time it is called.

© Advanced Card Systems Ltd. Page 33 of 56

AET63 API Guide version 1.7 February 2006

Return Values
Status Code

Remarks
PTClickCalibrate behaves very similarly to the PTNavigate. It calls navigation callbacks
the same way as PTNavigate. The only (and main) difference is that PTClickCalibrate is
used to collect information about given user's behavior.

For this purpose, in some phases (dwTypes) could be disabled by either the tapping or the
mouse movement functionality.

The host application should, for every phase, prompt the user to perform an action
appropriate for that phase and then display a progress feedback. A flag in the navigation
data will inform the host when FM collected enough data for the given phase. The host
should then finish the operation and progress to the next phase. However, if needed (e.g.
for the purpose of nice user interface), the current operation can be continued by the host
until the host decides to finish it.

2.4.3.2.u PTScanQuality
The PTScanQuality function returns scan quality of last finger swipe

LONG PTScanQuality(
PT CONNECTION hConnection,

PT DWORD *pdwScanQuality
)7
Parameters
hConnection
Handle of the connection to FM
pdwScanQuality

Returns scan quality of last finger swipe

Return Values
Status code

2.4.3.2.v PTAntispoofCapture

The PTAntispoofCapture function captures antispoofing data from the sensor. The captured data
will be remembered throughout the session and can be used by other biometric commands, which
scans the finger. This function can call GUI callbacks.

LONG PTAntispoofCapture (
PT CONNECTION hConnection,
PT LONG 1Timeout,
PT DWORD dwOperation,
PT BOOL “*pboLiveFingerDetected
)

Parameters
hConnection
Handle of the connection to FM
ITImeout
Timeout in milliseconds. "-1" means default timeout.
This parameter is meaningful only for interactive operations.
dwOperation
Operation to be performed
pbolLiveFingerDetected
Returns PT_TRUE if live finger was presented to the sensor

© Advanced Card Systems Ltd. Page 34 of 56

AET63 API Guide version 1.7 February 2006

Return Values
Status code

2.4.3.3 PerfectTrust Miscellaneous functions

2.4.3.3.a PTInfo

The PTInfo function returns a set of information about the connection and the TFM, including the
version of TFM.

LONG PTInfo(
PT CONNECTION hConnection,
PT INFO **ppInfo

) ;

Parameters
hConnection
Handle of the connection to TFM
pplinfo
Returned structure with information about the connection and the TFM

Return Values
Status code

2.4.3.3.b PTDiagnostics
The PTDiagnostics function is primarily targeted for use in manufacturer's diagnostic programs.

LONG PTDiagnostics (
PT CONNECTION hConnection,
PT DATA *pInData,
PT DATA **ppOutData

)i

Parameters

hConnection
Handle of the connection to TFM

plnData
Input data block

ppOutData
Pointer to a variable, which will receive the address of the output data block. The
data has to be freed by host.

Return Values
Status code

Remarks
This function can be called directly after opening a communication session. PTDiagnostics
is also exempted from the need of host authentication, which may be required in future API
versions.

2.4.3.3.c PTSetSessionCfgEx

The PTSetSessionCfgEx function sets the session parameters of the TFM. The parameters
influence especially the behavior of the biometric functions - e.g. should we use the advanced or the
standard templates etc.

The change of parameters is valid only for the current session. Each new session starts with the
default settings.

© Advanced Card Systems Ltd. Page 35 of 56

AET63 API Guide version 1.7 February 2006

PTSetSessionCfgEXx is an extension of the now obsolete function PTSetSessionCfg.

LONG PTSetSessionCfgEx (
PT CONNECTION hConnection,
PT WORD wCfgVersion,
PT WORD wCfgLength,
PT SESSION CFG *pSessionCfg
)i

Parameters
hConnection
Handle of the connection to TFM
wCfgVersion
Version of the configuration data. Use the constant PT_CURRENT_SESSION_CFG
wCfglLength
Length of the configuration data
pSessionCfg
Session configuration to be set

Return Values
Status code

2.4.3.3.d PTGetSessionCfgEx

The PTGetSessionCfgEx function gets the current session parameters of the TFM. The
parameters influence especially the behavior of the biometric functions - e.g. should we use the
advanced or the standard templates etc.

PTGetSessionCfgEx is an extension of the now obsolete function PTGetSessionCfg.

LONG PTGetSessionCfgEx (

PT CONNECTION hConnection,

PT WORD wCfgVersion,

PT WORD *pwCfgLength,

PT SESSION CFG **ppSessionCfg
)

Parameters
hConnection
Handle of the connection to TFM
wCfgVersion
Requested version of the configuration data
pwCfgLength
Pointer to the length of the received configuration data
ppSessionCfg
Returned session configuration

Return Values
Status code

2.4.3.3.e PTGetAvailableMemory

The PTGetAvailableMemory function returns the size in bytes of the remaining EEPROM memory
on the TFM available for application's usage.

LONG PTGetAvailableMemory (
PT CONNECTION hConnection,

© Advanced Card Systems Ltd. Page 36 of 56

AET63 API Guide version 1.7 February 2006

PT DWORD dwType,
PT DWORD *pdwAvailableMemory
) ;
Parameters
hConnection
Handle of the connection to TFM
dwType
Requested type of memory (see values PT_MEMTYPE_xxxx)
pdwAvailableMemory

Returned size of remaining EEPROM memory

Return Values
Status code

2.4.3.3.f PTSetAppData

The PTSetAppData function allows the application to store a block of arbitrary binary data in TFM's
non-volatile memory. There is only one block shared by all applications.

LONG PTSetAppData (
PT CONNECTION hConnection,
PT DWORD dwArea,
PT DATA *pAppData

) i

Parameters

hConnection
Handle of the connection to TFM

dwArea
Area to write. One of the PT_AREA_xxx values.

pAppData
The data to be stored in NVM. If the data length is zero, the application data will be
deleted.

Return Values
Status code

2.4.3.3.g PTGetAppData
The PTGetAppData function reads the application data stored in TFM's non-volatile memory.

LONG PTGetAppData (
PT CONNECTION hConnection,
PT DWORD dwArea,
PT DATA **ppAppData

)7

Parameters

hConnection
Handle of the connection to TFM

dwArea
Area to read. One of the PT_AREA_xxx values.

ppAppData
Address of the pointer, which will be set to point to the application data. If no data is
stored in NVM, the result will be a data block with zero length. The data has to be
freed by a call to PTFree.

Return Values
Status code

© Advanced Card Systems Ltd. Page 37 of 56

AET63 API Guide version 1.7 February 2006

2.4.3.3.h PTSetLED

The PTSetLED function allows the application to control the state and behavior of the two-user
interface LEDs, which can be optionally connected to the TFM.

LONG PTSetLED (
PT CONNECTION hConnection,

PT DWORD dwMode,
PT DWORD dwLED1,
PT DWORD dwLED2
)7
Parameters
hConnection
Handle of the connection to TFM
dwMode

Mode of the LEDs. Different modes define different behavior of the LEDs during
specific operations, especially the biometrics. See PT_LED_MODE_xxxx.

dwLED1
Parameter defining the detailed behavior of the first LED. This parameter is mode-
specific.

dwlLED2
Parameter defining the detailed behavior of the second LED. This parameter is
mode-specific.

Return Values
Status code.

2.4.3.3.i PTGetLED

The PTGetLED function allows the application to query the state and behavior of the two-user
interface LEDs, which can be optionally connected to the TFM.

LONG PTGetLED (
PT CONNECTION hConnection,

PT DWORD *pdwMode,
PT DWORD *pdwLED1,
PT DWORD *pdwLED2
);
Parameters
hConnection
Handle of the connection to TFM
pdwMode
Mode of the LEDs. See PTSetLED for details.
pdwlLED1

Parameter defining the detailed behavior of the first LED. This parameter is mode-
specific. See PTSetLED for details.

pdwlLED2
Parameter defining the detailed behavior of the second LED. This parameter is
mode-specific. See PTSetLED for details.

Return Values
Status code

2.4.3.3.j PTSleep

The PTSleep function switches FM to deep sleep or standby mode. In this mode, FM's CPU is
stopped to minimize power consumption. FM can be woken up from the sleep mode either by the
host or by another event (e.g. when a finger is detected on FM's sensor).

© Advanced Card Systems Ltd. Page 38 of 56

AET63 API Guide version 1.7 February 2006

When FM wakes up, the PTSleep function completes and returns the cause of wake up to the caller.

LONG PTSleep (
PT CONNECTION hConnection,

PT DWORD dwSleepMode,
PT IDLE CALLBACK pfnCallback,
void *pIdleCallbackCtx,
PT DWORD *pdwiWakeupCause

);

Parameters

hConnection
Handle to the connection to FM.

dwSleepMode

Sleep mode to be used. Possible values are PT_SLEEP_MODE_DEEPSLEEP
(fingerprint sensor is powered down (finger detect is not active),
PT_SLEEP_MODE_STANDBY (finger detect is active).

pfnCallback
Callback function, called periodically all the time FM is sleeping. Optional, can be
NULL.

pldleCallbackCtx
A generic pointer to context data. This pointer will be supplied to the callback
function every time it is called.

pdwWakeupCause
The cause of wakeup. Currently the following causes are possible:
PT_WAKEUP_CAUSE_HOST (signal from the Host),
PT_WAKEUP_CAUSE_FINGER (a finger was detected).

Return Values
Status code

2.4.3.4 Callback related definitions

2.4.3.4.a PT_STD_GUI_STATE_CALLBACK

The PT_STD_GUI_STATE_CALLBACK function is a standard PerfectTrust GUI callback. This
callback is the default until other callback is specified by PTSetGUICallbacks

LONG PT STD GUI STATE CALLBACK (

void *pGuiStateCallbackCtx,
PT DWORD dwGuiState,

PT BYTE *pbyResponse,

PT DWORD dwMessage,

PT BYTE byProgress,

void *pSampleBuffer,

PT DATA *pData
)

Parameters

pGuiStateCallbackCtx
A generic pointer to context information that was provided by the original requester
and is being returned to its originator.

dwGuiState
A bitmask indicating the current GUI state plus an indication of what other
parameters are available. It can be combined from values
PT_SAMPLE_AVAILABLE, PT_MESSAGE_PROVIDED and
PT_PROGRESS_PROVIDED. In the current implementation, only
PT_MESSAGE_PROVIDED is used.

pbyResponse

© Advanced Card Systems Ltd. Page 39 of 56

AET63 API Guide version 1.7 February 2006

The response from the application back to the PerfectTrust Proxy APl on return
from the callback. Can be one of values PT_CANCEL or PT_CONTINUE. Other
values are reserved for future use.

dwMessage
The number of a message to display to the user. For message numbers see
PT_GUIMSG_XXXX. GuiState indicates if a Message is provided; if not the
parameter is 0.

byProgress
A value that indicates (as a percentage) the amount of progress in the development
of a Sample/BIR. The value may be used to display a progress bar. GuiState
indicates if a sample Progress value is provided in the call. Otherwise, the
parameter is 0. This parameter is reserved for future use. Currently, it is always 0.

pSampleBuffer
The current sample buffer for the application to display. GuiState indicates if a
sample Buffer is provided; if not the parameter is NULL. This parameter is reserved
for future use. Currently, it is always NULL. The buffer is allocated and controlled by
PerfectTrust, it must not be freed.

pData
Optional data, which may be available for some GUI message codes. If no data is
provided, the parameter is NULL. The data is allocated and controlled by
PerfectTrust, it must not be freed.

Return Values
Status code

Remarks
It is guaranteed that if an operation displays GUI, the first GUI message will be "Begin GUI"
and the last one "End GUI". At least one more call with message "End GUI" will be sent
even in the case when the application used pbyResponse = PT_CANCEL.

2.4.4 Status Codes

Code Value Description
PT_STATUS OK 0 Success return status
PT_STATUS_GENERAL_ERROR -1001 | General or unknown error

status. It is also possible that
the function only partially
succeeded, and that the device
is in an inconsistent state.

PT_STATUS_API_NOT_INIT -1002 | PerfectTrust APl wasn't
initialized
PT_STATUS_API_ALREADY_INITIALIZED -1003 | PerfectTrust API has been
already initialized
PT_STATUS_INVALID_PARAMETER -1004 | Invalid parameter error
PT_STATUS_INVALID_HANDLE -1005 | Invalid handle error
PT_STATUS_NOT_ENOUGH_MEMORY -1006 | Not enough memory to process
given operation
PT_STATUS_MALLOC_FAILED -1007 | Failure of extern memory
allocation function
PT_STATUS DATA_TOO_LARGE -1008 | Passed data are too large

PT_STATUS_NOT_ENOUGH_PERMANENT_MEMORY | -1009 | Notenough permanent
memory to store data

PT_STATUS_MORE_DATA -1010 | There is more data to return
than the supplied buffer can
contain

PT_STATUS_FUNCTION_FAILED -1033 | Function failed

© Advanced Card Systems Ltd. Page 40 of 56

AET63 API Guide

version 1.7 February 2006

PT_STATUS_INVALID_INPUT_BIR_FORM -1036 | Invalid form of PT_INPUT_BIR
structure
PT_STATUS_WRONG_RESPONSE -1037 | TFM has returned wrong or
unexpected response
PT_STATUS_NOT_ENOUGH_TFM_MEMORY -1038 | Not enough memory on TFM to
process given operation
PT_STATUS_ ALREADY_OPENED -1039 | Connection is already opened
PT_STATUS_CANNOT_CONNECT -1040 | Cannot connect to TFM
PT_STATUS TIMEOUT -1041 | Timeout elapsed
PT_STATUS BAD BIO TEMPLATE -1042 | Bad biometric template
PT_STATUS _SLOT_NOT_FOUND -1043 | Requested slot was not found
PT_STATUS_ANTISPOOFING_EXPORT -1044 | Attempt to export antispoofing

info from TFM

PT_STATUS_ANTISPOOFING_IMPORT

-1045

Attempt to import antispoofing
info to TFM

PT_STATUS_ACCESS_DENIED

-1046

Access to operation is denied

PT_STATUS_NO_TEMPLATE -1049 | No template was captured in
current session

PT_STATUS_BIOMETRIC_TIMEOUT -1050 | Timeout for biometric operation
has expired

PT_STATUS_CONSOLIDATION_FAILED -1051 | Failure of template
consolidation

PT_STATUS BIO OPERATION_CANCELED -1052 | Biometric operation canceled

PT_STATUS_AUTHENTIFICATION_FAILED -1053 | Authentication failed

PT_STATUS _UNKNOWN_COMMAND -1054 | Unknown command
PT_STATUS GOING _TO SLEEP -1055 | Power off attempt failed
PT_STATUS_NOT_IMPLEMENTED -1056 | Function or service is not
implemented
PT_STATUS COMM_ERROR -1057 | General communication error
PT_STATUS_SESSION_TERMINATED -1058 | Session was terminated
PT_STATUS TOUCH_CHIP_ERROR -1059 | Touch chip error occurred
PT_STATUS 12C_EEPROM_ERROR -1060 | 12C EEPROM error occurred
PT_STATUS_INVALID_PURPOSE -1061 | Purpose parameter =or BIR's
purpose is invalid for given
operation
PT_STATUS_SWIPE_TOO_BAD -1062 | Finger swipe is too bad for
image reconstruction
PT_STATUS_NOT_SUPPORTED -1063 | Value of parameter is not

supported

PT_STATUS_CALIBRATION_FAILED

-1064

Calibration failed

PT_STATUS_ANTISPOOFING_NOT_CAPTURED

-1065

Antispoofing data were not
captured

PT_STATUS LATCHUP DETECTED -1066 | Sensor latch-up event detected
PT_STATUS_DIAGNOSTICS_FAILED -1067 | Diagnostics failed
PT_STATUS_IMAGE_INCONSISTENCE -1100 | Enroll Image Inconsistence

© Advanced Card Systems Ltd. Page 41 of 56

AET63 API Guide version 1.7 February 2006

3. Handling Fingerprint Template

3.1 Initialize Smart Card to store the fingerprint templates

1. Choose a smart card that can have enough size to store the fingerprint templates. The fingerprint
template can be 540 bytes maximum in size.

2. Initialize the smart card and create files in the smart card to store the fingerprint template. The
initialization can be done using the standard smart card application tools.

3. List down the APDUs to access to the file storing the fingerprint template. For each fingerprint
template, there should be one list of APDUs for enroliment and another list of APDUs for verification.
Store the lists of APDUs to the EEPROM. The lists of APDUs are stored in the EEPROM in the Tag-
Length-Value (TLV) format.

Tag Length Description
0x80 0x00 To reset the smart card
0xAO0 Length of the APDU To send the APDU to the smart card. The APDU is specified in the “Value”
field.
0x03 Length of the APDU This is the last APDU to read/write the fingerprint template in the smart card.

The APDU is specified in the “Value” field.

This APDU should either be the READ_BINARY or WRITE_BINARY
command. The first byte is the CLA. The second byte is the INS. The third
and forth byte specified the address to be read/written.

Example 1
The data to be written to EEPROM for enrollment can be:

80 00 A0 06 00 A4 02 00 02 33 33 00 03 05 00 D6 00 00 0O
Reset Select file APDu Write Binary APDU

Example 2

The data to be written to EEPROM for verification can be:

80 00 A0 06 00 A4 02 00 02 33 33 00 03 05 00 BO 00 00 0O

Reset Select file APDu Read Binary APDU

The EEPROM can store lists of APDUs for up to 5 fingerprint templates. For each fingerprint template, there
is one list of APDUs for enroliment and one list of APDUs for verification. The address mapping of the
EEPROM is shown in figure 1.

© Advanced Card Systems Ltd. Page 42 of 56

AET63 API Guide version 1.7 February 2006

Address 0x0000

Enroll (256 bytes max)
Address 0x0100 [~~~ RECORD 0 ----------oooomomoooo

Verify (256 bytes max)
Address 0x0200

Enroll (256 bytes max)
Address 0x0300 F--— RECORD1 -———=--—=-——=———————-

Verify (256 bytes max)
Address 0x0400

Enroll (256 bytes max)
Address 0x0500 F--- RECORD 2 -------mommmmmmmmmom

Verify (256 bytes max)
Address 0x0600

Enroll (256 bytes max)
Address 0x0700 -~ RECORD3 ————===========———-—-

Verify (256 bytes max)
Address 0x0800

Enroll (256 bytes max)
Address 0x0900 F--- RECORD4 -------ommmmmmmmmmom

Verify (256 bytes max)

Figure 1 Address Mapping of the EEPROM

3.2 Store the fingerprint template to the Smart Card

1. Before doing any operation, you should call the PTOpen() to open the port (connection) to our
reader.

2. Use the API called PTEnrolISC3() to save the fingerprint template to the smart card.

3. AET63 uses the APDUs stored in the EEPROM to access to the specified smart card file.

3.3 Verify the fingerprint in the TFM

Use the API called PTVerifySC() to verify the fingerprint with the template stored in smart card.
Use another API called PTVerifySCAII() to verify the fingerprint with all the templates stored in
smart card.

3. AET63 uses the APDUs stored in the EEPROM to access to the specified smart card file.

The PT_DATA structure is used to associate any arbitrary long data block with the length
information.

N —

3.4 Registering Callback Function

Besides depending on our library to handle the GUI callback, user can register a callback function to
receive these GUI callback message and handle them.

PT STATUS PTSetGUICallbacks (
IN PT CONNECTION hConnection,
IN PT GUI STREAMING CALLBACK pfnGuiStreamingCallback,
IN void *pGuiStreamingCallbackCtx,
IN PT GUI STATE CALLBACK pfnGuiStateCallback,
IN void *pGuiStateCallbackCtx
)

© Advanced Card Systems Ltd. Page 43 of 56

AET63 API Guide

version 1.7 February 2006

This is a type of the callback function that an application can supply to enable itself to display GUI
state information to the user.

typedef PT_STATUS (PTAPI *PT_GUI_STATE_CALLBACK) (
IN void *pGuiStateCallbackCtx,
IN PT_DWORD dwGuiState,
OUT PT_BYTE *pbyResponse,
IN PT_DWORD dwMessage,
IN PT_BYTE byProgress,
IN void *pSampleBuffer,
IN PT_DATA *pData

Description

A type of the callback function that an application can supply to
enable itself to display GUI state information to the user.

Parameters

pGuiStateCallbackCtx

A generic pointer to context information
that was provided to the PTSetGUICallbacks
function and now is returned in every
callback.

dwGuiState

A bitmask indicating the current GUI state
plus an indication of what other
parameters are available. It can be
combined from values PT SAMPLE AVAILABLE,
PT MESSAGE PROVIDED and

PT PROGRESS PROVIDED. In the current
implementation, only PT MESSAGE PROVIDED
is used.

pbyResponse

The response from the application back to
the PTAPI on return from the callback. Can
be one of values PT CANCEL (cancel the
operation in progress) or PT CONTINUE
(continue with the operation in progress).
Other values are reserved for future use.

dwMessage

The number of a message to display to the

user. For message numbers see

PT GUIMSG XXXX. DwGuiState indicates if a

message 1s provided; if no, this parameter
should be ignored.

byProgress

Reserved for future use.

pSampleBuffer

Reserved for future use.

pData

Reserved for future use.

Return Value

PT STATUS

Result code. PT _STATUS OK (0) means
success

PT MESSAGE PROVIDED|0Ox1

dwMessage parameter is valid

PT CANCEL

Ox1

Cancel the operation

PT CONTINUE

0x0

Continue the operation

© Advanced Card Systems Ltd.

Page 44 of 56

AET63 API Guide version 1.7 February 2006

3.5 GUI Message Codes

PT_GUIMSG_GOOD_IMAGE 0 Image with acceptable quality was just
scanned.

PT GUIMSG NO FINGER 1 No finger detected.

PT_GUIMSG_TOO_LIGHT 2 Finger image is too light.

PT GUIMSG TOO DRY 3 Finger is too dry.

PT GUIMSG TOO DARK 4 Finger image is too dark.

PT GUIMSG TOO HIGH 5 Finger is too high.

PT GUIMSG TOO LOW 6 Finger is too low.

PT GUIMSG TOO LEFT 7 Finger is too left.

PT GUIMSG TOO RIGHT 8 Finger is too right.

PT GUIMSG TOO SMALL 9 Finger image is too small.

PT_GUIMSG_TOO_STRANGE 10 Finger image is too strange.

PT GUIMSG BAD QUALITY 11 Finger has bad quality.

PT GUIMSG PUT FINGER 12 Put finger 1st time.

PT GUIMSG PUT FINGER2 13 Put finger 2nd time.

PT_GUIMSG_PUT_FINGER3 14 Put finger 3rd time.

PT GUIMSG REMOVE FINGER 15 Remove finger.

PT GUIMSG CONSOLIDATION FAIL 16 Multiple enroliment failed.

PT_GUIMSG_CONSOLIDATION_SUCCEE |17 Multiple enroliment succeed.

D

PT GUIMSG CLEAN SENSOR 18 Clean the sensor.

PT GUIMSG KEEP FINGER 19 Keep finger on the sensor.

PT GUIMSG START 20 GUI starts now.

PT GUIMSG VERIFY START 21 GUI starts now for verify operation.

PT GUIMSG ENROLL START 22 GUI starts now for enroll operation.

PT_GUIMSG_FINGER_DETECT_START 23 GUI starts now for detect finger
operation.

PT_GUIMSG_GUI_FINISH 24 GUI ends now.

PT GUIMSG GUI FINISH SUCCEED 25 GUI ends now after success.

PT GUIMSG GUI FINISH FAIL 26 GUI ends now after failure.

PT GUIMSG CALIB START 27 GUI starts now for sensor calibration.

PT GUIMSG TOO FAST 28 Too fast finger swipe.

PT GUIMSG TOO SKEWED 29 Too skewed finger swipe.

PT GUIMSG TOO SHORT 30 Too short finger swipe.

PT_GUIMSG_TOUCH_SENSOR 31 Touch the sensor. Used on strip sensor
to distinguish from PUT_FINGER =
swipe finger.

PT_GUIMSG_PROCESSING_IMAGE 32 Finger image passed preliminary
check and now is about to enter
template extraction, which takes
approx. 1 second.

PT_GUIMSG_SWIPE_IN_PROGRESS 33 Finger was detected and is about to be
scanned. The application must react
very quickly to this message, otherwise
a part of finger image may get lost.

Note: Please note that not all of the defined GUI codes are really used. Some of them are defined for future
use or used connection with other sensors only.

© Advanced Card Systems Ltd. Page 45 of 56

AET63 API Guide version 1.7 February 2006

4. Interface Function Prototypes (Smart Card) [Proprietary Driver Only]

Generally, a program is required to call AC_Open first to obtain a handle. The handle is required for
subsequent calls to AC_StartSession, AC_ExchangeAPDU, AC_EndSession and AC_Close. The inserted
card can be powered up by using the AC_StartSession function and card commands can be exchanged
with the inserted card using the AC_ExchangeAPDU function. Moreover, AC_SetOptions and AC_GetInfo

are two commands that can be used to set and read the various information of the reader.

4.1 AC _Open

This function opens a port and returns a valid reader handle for the application program.

Format:
INT16 AC_DECL AC_Open (INT16 ReaderType, INT16 ReaderPort);

Input Parameters:

The table below lists the parameters for this function (you can refer to TFM.H for the corresponding value):

Parameters Definition / Values

ReaderType® AET63 = AET63 BioTRUSTKey
ReaderPort The port that is connected with the reader.
AC_USB = Using the USB communication port

Returns:
The return value is negative and contains the error code when the function encounters an error during
operation. Otherwise, it returns a valid reader handle. Please refer to appendix A for the detailed description

and meaning of the error codes.

Examples:

/I Open a port to an AET63 connected to USB
INT16 hReader;

hReader = AC Open (AET63,AC _USB);

Remarks:
When the application wants to access the security module, it needs to open (use the AC_Open command)

the reader for the second time to get a different handler for the handling of the security module session.

© Advanced Card Systems Ltd. Page 46 of 56

AET63 API Guide version 1.7 February 2006

4.2 AC _Close

This function closes a previously opened reader port.

Format:

INT16 AC DECL AC Close (INT16 hReader);
Input Parameters:

The table below lists the parameters for this function

Parameters Definition / Values
HReader A valid reader handle previously opened by AC_Open()
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:

// Close a previously opened port
INT16 RtnCode;
RtnCode = AC Close (hReader) ;

4.3 AC_StartSession

This function starts a session with a selected card type and updates the session structure with the values
returned by the card Answer-To-Reset (ATR). A card reset starts a session and it is ended by either another
card reset, a power down of the card or the removal of a card from the reader. Note that this function will

power up the card and perform a card reset.

Format:
INT16 AC DECL AC_StartSession (INT16 hReader, AC_SESSION FAR *Session);

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values

hReader A valid reader handle returned by AC_Open()

Session.CardType The selected card type for this session (AC_TO for T=0 card, AC_T1 for
T=1 card, and "0” for auto detect MCU smart card)

Session.SCModule | The selected security module number

© Advanced Card Systems Ltd. Page 47 of 56

AET63 API Guide version 1.7 February 2006

Parameters Definition / Values

(Required only when card type =AC_SCModule)

Output Parameters:

The table below lists the parameters returned by this function:

Parameters Definition / Values

Session.ATR Answer to Reset returned by the card
Session.ATRLen Length of the answer to reset
Session.HistLen Length of the historical data
Session.HistOffset Offset of the historical data
Session.APDULenMax | Maximum length of APDU supported

Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:

// Prepare Session structure for T=0 smart card
INT16 RtnCode, i;

AC _SESSION Session;

Session.CardIype = AC TO; // Card type : T=0

//Start a session on previously opened port

RtnCode = AC StartSession (hReader, &Session);

// Print the card ATR

printf ("Card Answer to Reset : ");

for (1 = 0; 1 < (INT1l6) Session.ATRLen; i++)
printf (" %$02X",Session.ATR[1i]);

Remarks:

When no card type is selected (i.e. Session.CardType = 0), the reader will try to detect the inserted card
type automatically. However, while the reader can distinguish the T=0 card, T=1 card and synchronous

memory card, it cannot distinguish different types of memory card.

© Advanced Card Systems Ltd. Page 48 of 56

AET63 API Guide version 1.7 February 2006

4.4 AC_EndSession

This function ends a previously started session and powers off the card.

Format:
INT16 AC DECL AC _EndSession (INT16 hReader);

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values
HReader A valid reader handle returned by AC_Open()
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:
//End session on a previously started session

RtnCode = AC EndSession (hReader);

4.5 AC_ExchangeAPDU

This function sends an APDU command to a card via the opened port and returns the card's response.

Format:
INT16 AC DECL AC ExchangeAPDU (INT16 hReader, AC APDU FAR *Apdu);

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values

hReader A valid reader handle returned by AC_Open()
Apdu.CLA Instruction Class

Apdu.INS Instruction Code

Apdu.P1 Parameter 1

Apdu.P2 Parameter 2

Apdu.Dataln Data buffer to send

Apdu.Lc Number of bytes in Apdu.Dataln to be sent
Apdu.Le Number of bytes expected to receive

© Advanced Card Systems Ltd. Page 49 of 56

AET63 API Guide version 1.7 February 2006

Output Parameters:
The table below lists the parameters returned by this function:

Parameters Definition / Values

Apdu.DataOut Data buffer containing the card response
Apdu.Le Number of bytes received in Apdu.DataOut
Apdu.Status Status bytes SW1, SW2 returned by the card
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:
// Read 8 bytes of data from T=0 card
INT16 RtnCode, i;

AC_APDU Apdu;

Apdu.CLA = 0x00; // Instruction Class

Apdu.INS = 0xBO; // INS = Read File

Apdu.P1l = 0x00; // MSB of starting address
Apdu.P2 = 0x00; // LSB of starting address
Apdu.Lc = 0x00; // No input data for this command
Apdu.Le = 0x08; // Read 8 bytes data

//Exchange APDU with AET63
RtnCode = AC ExchangeAPDU (hReader, &Apdu);

if (RtnCode >= 0)

{
// print the data

printf ("Data : ");
for (i=0; i < (INT16) Apdu.Lle; i++)
printf (" %02X",Apdu.DataOut([i]);
// print the status bytes
printf ("Card Status (SWl SW2)=%04X",Apdu.Status);

4.6 AC_Getinfo

This function retrieves information related to the currently selected reader.

Format:
INT16 AC DECL AC GetInfo (INTl16 hReader, AC INFO FAR *Info);

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values

Hreader A valid reader handle returned by AC_Open()

© Advanced Card Systems Ltd. Page 50 of 56

AET63 API Guide version 1.7 February 2006

Output Parameters:

The table below lists the parameters returned by this function:

Parameters Definition / Values

Info.szRev Revision code for the selected reader.

Info.nMaxC The maximum number of command data bytes.

Info.nMaxR The maximum number of data bytes that can be requested to be

transmitted in a response

Info.CType The card types supported by this reader

Info.CStat The current status of the reader
004 = no card inserted
01y = card inserted, not powered up

03y = card powered up

Info.CSel The currently selected card type

Info.nLibVer Current library version

(e.g. 310 is equal to version 3.10)

Info.IBaudRate The current running baud rate

Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the
error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:

// Get the revision code of the currently selected reader
INT16 RtnCode;
AC INFO Info;

RtnCode = AC GetInfo (hReader, &Info);
printf ("Reader Operating System ID : %s",Info.szRev);

4.7 AC_SetOption

This function sets various options for the reader.

Format:
INT16 AC_DECL AC_SetOptions (INT16 hReader, WORD16 Type, WORD16 Value);

Input Parameters:
The table below lists the parameters for this function

Parameters Definition / Values

HReader A valid reader handle returned by AC_Open()

© Advanced Card Systems Ltd. Page 51 of 56

AET63 API Guide

version 1.7 February 2006

Parameters Definition / Values
(except for the ACO_RESET_READER option)
Type Type of option that is going to set
Value Value parameter for the selected option type
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value meaning that the

option setting is not available.

Options:
Options Type Value
Enable the reader to issue ACO_ENABLE_GET_RESP SW1 + “00”

the GET _RESPONSE
command automatically
(only valid for the MCU card)

ONSE

(GET_RESPONSE will be
issued automatically when

this SW1 is returned from

supporting the “eject card”

option or not*

BILITIES

the card)
Disable the automatic issue | ACO_DISABLE 0
of the GET_RESPONSE GET_RESPONSE
command
(this is the default option of
the reader)
Check the reader is ACO_GET_READER_CAPA |0

Enable / Disable card
insertion / removal

notification message

ACO_SET_NOTIFICATION

1 =enable notification

2 =disable naotification

* Function return 0 when that option is supported, otherwise it is not supported

Examples:

// Set the AET63 to disable the automatic issue of the GET RESPONSE command

INT16 RtnCode;

RtnCode = AC SetOption (hReader, ACO DISABLE GET RESPONSE, 0);

if (RtnCode < 0)

printf ("Set option failed\n");

© Advanced Card Systems Ltd. Page 52 of 56

AET63 API Guide version 1.7 February 2006

5. Interface Function Prototypes (EEPROM) [Proprietary Driver Only]
There are two functions for user to read and write the EEPROM insider the reader, namely
AC _ReadEEPROM and AC_ WriteEEPROM. Similar to the functions mentioned in previous section, the

handle for these two functions should be obtained by AC_Open and released by AC_Close.

5.1 AC_ReadEEPROM
This function reads out the content from the EEPROM.
Format:
DLLAPI INT16 AC DECL AC ReadEEPROM(INT16 hReader,
UINT16 addr,
UINT16 len,
UINT8* buf,
UINT16* pDatalen);

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values

hReader A valid reader handle returned by AC_Open()

addr EEPROM address

len Number of bytes to read in

buf Data buffer for storing the content

pDatalLen Pointer to UINT16 variable for storing the total number of bytes read in
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:

// Read in EEPROM content from address 0x100, 10 bytes
UINTS8 dataBuf[10];

UINT16 datalLen;

INT16 RtnCode;

int i

RtnCode = AC ReadEEPROM (hReader, 0x100, 10, dataBuf, &datalLen);
if (RtnCode >= 0)
{

// print the data

printf ("Data : ");

for (1i=0; 1 < 10; 1i++)

{

printf (" %02X",dataBuf[i]);
}

© Advanced Card Systems Ltd. Page 53 of 56

AET63 API Guide version 1.7 February 2006

5.2 AC_WriteEEPROM

This function writes out the content to the EEPROM.

Format:

DLLAPI INT16 AC DECL AC WriteEEPROM (INT16 hReader,
UINT16 addr,
UINT16 len,
UINT8* buf) ;

Input Parameters:

The table below lists the parameters for this function:

Parameters Definition / Values
hReader A valid reader handle returned by AC_Open()
addr EEPROM address
len Number of bytes to write out
buf Data buffer for storing the content
Returns:

The return value is zero if the function is successful. Otherwise, it returns a negative value containing the

error code. For the detailed meaning of the error code, please refer to appendix A.

Examples:

// Write out 10 bytes data to EEPROM address 0x100
UINTS8 dataBuf[10];

INT16 RtnCode;

RtnCode = AC WriteEEPROM (hReader, 0x100, 10, dataBuf);
if (RtnCode < 0)
{

printf (“Write EEPROM failed (%d)\n”, RtnCode);
}

© Advanced Card Systems Ltd. Page 54 of 56

AET63 API Guide version 1.7 February 2006

Appendix A: Table of Error Codes

Code Meaning

-603 Error in the reader handle

-600 Session parameter is null

-108 No free handle left for allocation
-100 Selected port is invalid

-101 Selected reader is invalid

-102 Selected port is occupied

-1001 No card type selected

-1002 No card is inserted

-1003 Wrong card type

-1004 Card not powered up

-1005 INS is invalid

-1006 Card failure

-1007 Protocol error

-1008 Card type not supported

-1009 Incompatible command

-1010 Error in address

-1011 Data length error

-1012 Error in response length

-1013 Secret code locked

-1014 Invalid SC module number
-1015 Incorrect password

-1050 Errorin CLA

-1051 Error in APDU parameters
-1052 Communication buffer is full
-1053 Address not align with word boundary
-1080 Protocol frame error

-1081 No response from reader

-1082 Error found in the calling function’s parameters
-1083 Specified function not supported
-1084 Connector short circuit

-1085 Unexpected internal error
-1086 A required DLL file is missing
-1099 Unknown response

-2000 USB internal error

-2001 Error in memory allocation

© Advanced Card Systems Ltd. Page 55 of 56

AET63 API Guide version 1.7 February 2006

-2002 Error in linking USB library
-2003 Error in locating window system directory
-3000 Error found in PCSC smart card manager

© Advanced Card Systems Ltd. Page 56 of 56

	Contents
	Introduction
	TFM.DLL
	Overview
	Communication Speed
	TFM API ¨C Smart Card Reader
	Interface Data Structure
	AC_APDU
	AC_SESSION
	AC_INFO

	TFM API ¨C Fingerprint Scanner
	Type Declarations
	Interface Data Structure
	PT_GLOBAL_INFO
	PT_DATA
	PT_MEMORY_FUNCS
	PT_BIR_HEADER
	PT_BIR
	PT_INPUT_BIR
	PT_INFO
	PT_SESSION_CFG
	PT_FINGER_LIST
	PT_NAVIGATION_CALLBACK

	Functions
	Application General Functions
	PTInitialize
	PTTerminate
	PTGlobalInfo
	PTOpen
	PTClose
	PTSetGUICallbacks
	PTFree

	PerfectTrust Biometric functions
	PTCapture
	PTEnroll
	PTEnrollSC
	PTEnrollSC3
	PTVerifyMatch
	PTVerify
	PTVerifySC
	PTVerifySCAll
	PTVerifyEx
	PTVerifyAll
	PTDetectFingerEx
	PTStoreFinger
	PTDeleteFinger
	PTDeleteAllFingers
	PTSetFingerData
	PTGetFingerData
	PTListAllFingers
	PTCalibrate
	PTNavigate
	PTClickCalibrate
	PTScanQuality
	PTAntispoofCapture

	PerfectTrust Miscellaneous functions
	PTInfo
	PTDiagnostics
	PTSetSessionCfgEx
	PTGetSessionCfgEx
	PTGetAvailableMemory
	PTSetAppData
	PTGetAppData
	PTSetLED
	PTGetLED
	PTSleep

	Callback related definitions
	PT_STD_GUI_STATE_CALLBACK

	Status Codes

	Handling Fingerprint Template
	Initialize Smart Card to store the fingerprint templates
	Store the fingerprint template to the Smart Card
	Verify the fingerprint in the TFM
	Registering Callback Function
	GUI Message Codes

	Interface Function Prototypes (Smart Card) [Proprietary Driver Only]
	AC_Open
	AC_Close
	AC_StartSession
	AC_EndSession
	AC_ExchangeAPDU
	AC_GetInfo
	AC_SetOption

	Interface Function Prototypes (EEPROM) [Proprietary Driver Only]
	AC_ReadEEPROM
	AC_WriteEEPROM

	Appendix A: Table of Error Codes

