

ACR100I SIMFlash II (CCID)

SIMFlash with Embedded Mifare

Table of Contents

1.0.	Introduction	3
2.0.	Features	4
3.0.	System Block Diagram	5
4.0.	Power Supply	
4.1. 4.2.	Status LED Embedded Mifare Chip	
5.0.	Smart Card Interface	7
5.1. 5.2. 5.3. 5.4. 5.5.	Smart Card Power Supply VCC (C1) Programming Voltage VPP (C6) Card Type Selection Interface for Microcontroller-Based Cards Card Tearing Protection USB Interface	7 7 7
6.1. 6.2. 6.2	Communication Parameters	8 88
7.0.	Communication Protocol	9
7.1	Command to the ACR100I	10 15 17
Appei	ndix A. Supported Card Types	19
	ndix B. Response Error Codes	20

1.0. Introduction

ACR100I SIMFlash II (CCID) is not an ordinary smart card reader. Its memory storage comes with NAND Flash memory for high capacity data storage needs. This can be partitioned into a maximum of three sections as desired by the user. ACR100I SIMFlash II (CCID) also has an embedded Mifare 1K chip for various contactless card functions, such as logical and physical access.

The flash memory acts like any combination of up to three drives, which may include Private/Security, Public and CD ROM/Auto-Run, and Hidden, in order to boost security and flexibility when you store different kinds of software. Aside from its mass storage device class compatibility, its CCID compliance eliminates driver installation issues, allowing for its easy integration into a PC environment.

ACR100I SIMFlash II (CCID) is designed to access SIM-sized smart cards. It can be used in E-Government, E-Banking and E-Payment, Public Key Infrastructure, Network Security, GSM Management, VoIP, Secure Data Storage, Access Control, and Loyalty Program.

2.0. Features

- USB Combo Device works as a smart card reader and mass storage device
- SIM-sized slot for smart card at USB 2.0 full speed
- NAND Flash support at USB 2.0 high speed
- Plug-and-Play CCID support brings supreme compatibility and mobility
- Extractable USB
- Two color LEDs for smart card and NAND Flash status indication
- Smart card reader:
 - Supports plug in (SIM-sized) cards
 - Supports ISO 7816 Class A, B, and C (5 V, 3 V, 1.8 V) cards
 - o Reads and writes onto T=0, T=1 protocol microprocessor cards
 - Supports memory cards
 - Supports Spec. 11.11 compliant GSM cards
 - Features Short circuit protection
- Flash drive:
 - Built-in NAND Flash memory
 - o Up to three partitions (Private/Security, Public and CD ROM/auto-run, and Hidden)
- Contactless feature:
 - o Embedded Mifare Chip
- Compliant with the following standards:
 - o PC/SC
 - o CE
 - o FCC
 - o VCCI
 - o RoHS
 - Microsoft WHQL

3.0. System Block Diagram

The USB Hub Controller is the communication interface between the PC and the MCU of the smart card and the flash memory via USB port connection. The flash memory is available for the end-user to use as storage. In Windows Explorer, the device is detected as a removable disk. The ACR100I is powered from the USB port without other external power supply.

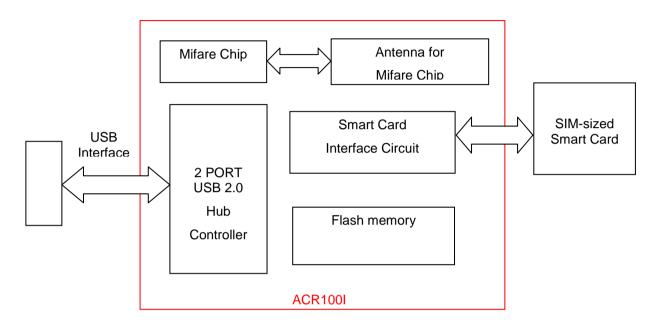


Figure 1: ACR100I System Block Diagram

4.0. Power Supply

The ACR100I requires a voltage of 5 V DC, 300 mA regulated power supply, and gets the power supply from PC.

4.1. Status LED

Bicolor LED in front of the reader indicates the activation status of the smart card and flash memory interface.

GREEN LED:

Flashing slowly (turns on 200 ms for every 2 seconds)

Indicates that the ACR100I is powered up and in the standby state. Either the smart card has not been inserted or the smart card has not been powered up (if it is inserted).

Lighting up

Indicates power supply to the smart card is switched on, i.e., the smart card is activated.

Flashing quickly

Indicates there is a communication between ACR100I and smart card.

RED LED:

Lighting up

Indicates there is a communication between ACR100I and flash memory.

4.2. Embedded Mifare Chip

The ACR100I has an embedded Mifare chip with a memory size of 1K.

5.0. Smart Card Interface

The interface between the ACR100I and the inserted smart card follows the specifications of ISO 7816-3.

5.1. Smart Card Power Supply VCC (C1)

The current consumption of the inserted card must not be higher than 50 mA.

5.2. Programming Voltage VPP (C6)

According to ISO 7816-3, the smart card contact C6 (VPP) supplies the programming voltage to the smart card. Since all common smart cards in the market are EEPROM based and do not require the provision of an external programming voltage, the contact C6 (VPP) has been implemented as a normal control signal in the ACR100I. The electrical specifications of this contact are identical to those of the single RST (at contact C2).

5.3. Card Type Selection

The controlling PC has to select the card type always through the proper command sent to the ACR100I prior to activating the inserted card. This includes both the memory cards and MCU-based cards. For MCU-based cards, the reader allows to select the preferred protocol, T=0 or T=1, however, this selection is only accepted and carried out by the reader through the PPS when the card inserted in the reader supports both protocol types. Whenever an MCU-based card supports only one protocol type, T=0 or T=1, the reader automatically uses that protocol type, regardless of the protocol type selected by the application.

5.4. Interface for Microcontroller-Based Cards

For microcontroller-based smart cards, only the contacts C1 (VCC), C2 (RST), C3 (CLK), C5 (GND), and C7 (I/O) are used. A frequency of 4 MHz is applied to the CLK signal (C3).

5.5. Card Tearing Protection

The ACR100I provides a mechanism to protect the inserted card when it is suddenly withdrawn while it is powered up. The power supply to the card and the signal lines between the ACR100I and are immediately deactivated when the card is being removed. As a rule, however, to avoid any electrical damage, a card should only be removed from the reader while it is powered down.

Note: The ACR100I never switches on the power supply to the inserted card by itself. This must be explicitly be done by controlling the computer through the proper command sent to the reader.

6.0. USB Interface

The connection of the ACR100I to a computer through a USB port follows a USB Standard.

6.1. Communication Parameters

The ACR100I is connected to a computer through USB as specified in the USB Specification 2.0. The ACR100I is working in high-speed mode, i.e. 480 Mbps.

Pin	Signal	Function
1	V _{BUS}	+5 V power supply for the reader (Max 500 mA, Normal 300 mA)
2	D-	Differential signal transmits data between ACR100I and PC.
3	D+	Differential signal transmits data between ACR100I and PC.
4	GND	Reference voltage level for power supply

6.2. Endpoints

The ACR100I uses the following endpoints to communicate with the host computer

6.2.1. Smart Card Reader

Control Endpoint	For setup and control purpose
Bulk OUT	For command to sent from host to ACR100I (data packet size is 64 bytes)
Bulk IN	For response to sent from ACR100I to host (data packet size is 64 bytes)
Interrupt IN	For card status message to sent from ACR100I to host (data packet size is 8 bytes)

6.2.2. Mass Storage

Control Endpoint	For setup and control purpose
Bulk OUT	For command to sent from host to Device (data packet size is 512 bytes)
Bulk IN	For response to sent from Device to host (data packet size is 512 bytes)

7.0. Communication Protocol

ACR100I shall interface with the host with through USB connection. A specification, namely CCID, has been released within the industry defining such protocol for the USB chip-card interface devices. CCID covers all the protocols required for operating smart cards and PIN.

The configurations and usage of USB endpoints on ACR100I shall follow CCID Section 3. An overview is summarized below:

- 1. Control Commands are sent on a control pipe (default pipe). These include class-specific requests and USB standard requests. Commands that are sent on the Default Pipe Report Information back to the host on the default pipe.
- 2. CCID Events are sent on the interrupt pipe.
- 3. CCID Commands are sent on Bulk-OUT endpoint. Each command sent to ACR100I has an associated ending response. Some commands can also have intermediate responses.
- 4. CCID Responses are sent on Bulk-IN endpoint. All commands sent to ACR100I have to be sent synchronously. (i.e. bMaxCCIDBusySlots is equal to 1 for ACR100I)

The supported CCID features by ACR100I are indicated in its Class Descriptor:

Offset	Field	Size	Value	Description
0	bLength	1	36h	Size of this descriptor, in bytes
1	bDescriptorType	1	21h	CCID Functional Descriptor type
2	bcdCCID	2	0100h	CCID Specification Release Number in Binary-Coded decimal
4	bMaxSlotIndex	1	00h	One slot is available on ACR100I
5	bVoltageSupport	1	07h	ACR100l can supply 1.8V, 3.0V and 5.0V to its slot
6	dwProtocols	4	00000 003h	ACR100I supports T=0 and T=1 Protocol
10	dwDefaultClock	4	00000 FA0h	Default ICC clock frequency is 4MHz
14	dwMaximumClock	4	00000 FA0h	Maximum supported ICC clock frequency is 4MHz
18	bNumClockSupported	1	00h	Does not support manual setting of clock frequency
19	dwDataRate	4	00002 A00h	Default ICC I/O data rate is 10752 bps
23	dwMaxDataRate	4	0001F 808h	Maximum supported ICC I/O data rate is 250000 bps
27	bNumDataRatesSuppor ted	1	00h	Does not support manual setting of data rates
28	dwMaxIFSD	4	00000 Feh	Maximum IFSD supported by ACR100I for protocol T=1 is 254

Offset	Field	Size	Value	Description
32	dwSynchProtocols	4	00000 000h	ACR100I does not support synchronous card
36	dwMechanical	4	00000 000h	ACR100I does not support special mechanical characteristics
40	dwFeatures	4	00010 030h	ACR100I supports the following features: • Automatic ICC clock frequency change according to parameters • Automatic baud rate change according to frequency and FI,DI parameters • TPDU level exchange with ACR100I
44	dwMaxCCIDMessageLen gth	4	00000 10Fh	Maximum message length accepted by ACR100I is 271 bytes
48	bClassGetResponse	1	00h	Insignificant for TPDU level exchanges
49	bClassEnvelope	1	00h	Insignificant for TPDU level exchanges
50	wLCDLayout	2	0000h	No LCD
52	bPINSupport	1	00h	No PIN Verification
53	bMaxCCIDBusySlots	1	01h	Only 1 slot can be simultaneously busy

7.1. Command to the ACR100I

7.1.1. CCID Command Pipe Bulk-OUT Messages

ACR100I shall follow the CCID Bulk-OUT Messages as specified in CCID section 4. In addition, this specification defines some extended commands for operating additional features. This section lists the CCID Bulk-OUT Messages to be supported by ACR100I.

7.1.1.1. PC_to_RDR_IccPowerOn

Activate the card slot and return ATR from the card

Offset	Field	Size	Value	Description
0	bMessageType	1	62h	
1	dwLength	4	00000 000h	Size of extra bytes of this message
2	bSlot	1		Identifies the slot number for this command

Offset	Field	Size	Value	Description
5	bSeq	1		Sequence number for command
6	bPowerSelect	1		Voltage that is applied to the ICC 00h – Automatic Voltage Selection 01h – 5 volts 02h – 3 volts
7	abRFU	2		Reserved for future use

The response to this message is the $RDR_to_PC_DataBlock$ message and the data returned is the Answer To Reset (ATR) data.

7.1.1.2. PC_to_RDR_lccPowerOff

Deactivate the card slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	63h	
1	dwLength	4	00000 000h	Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	abRFU	3		Reserved for future use

The response to this message is the RDR to PC SlotStatus message.

7.1.1.3. PC_to_RDR_GetSlotStatus

Gets the current status of the slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	65h	
1	dwLength	4	00000 000h	Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	abRFU	3		Reserved for future use

The response to this message is the ${\tt RDR_to_PC_SlotStatus}$ message.

7.1.1.4. PC_to_RDR_XfrBlock

Transfer data block to the ICC.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Fh	
1	dwLength	4		Size of abData field of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	bBWI	1		Used to extend the CCIDs Block Waiting Timeout for this current transfer. The CCID will timeout the block after "this number multiplied by the Block Waiting Time" has expired.
8	wLevelParameter	2	0000h	RFU (TPDU exchange level)
10	abData	Byte array		Data block sent to the CCID. Data is sent "as is" to the ICC (TPDU exchange level)

The response to this message is the RDR to PC DataBlock message.

7.1.1.5. PC_to_RDR_GetParameters

Get slot parameters.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Ch	
1	DwLength	4	00000 000h	Size of extra bytes of this message
5	BSlot	1		Identifies the slot number for this command
6	BSeq	1		Sequence number for command
7	AbRFU	3		Reserved for future use

The response to this message is the RDR to PC Parameters message.

7.1.1.6. PC_to_RDR_ResetParameters

Reset slot parameters to default value.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Dh	
1	DwLength	4	00000 000h	Size of extra bytes of this message
5	BSlot	1		Identifies the slot number for this command
6	BSeq	1		Sequence number for command
7	AbRFU	3		Reserved for future use

The response to this message is the RDR_to_PC_Parameters message.

7.1.1.7. PC_to_RDR_SetParameters

Set slot parameters.

Offset	Field	Size	Value	Description
0	bMessageType	1	61h	
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Identifies the slot number for this command
6	bSeq	1		Sequence number for command
7	bProtocolNum	1		Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for I2C protocol
8	abRFU	2		Reserved for future use
10	abProtocolDataS tructure	Byte array		Protocol Data Structure

Protocol Data Structure for Protocol T=0 (dwLength=00000005h)

Offset	Field	Size	Value	Description
10	bmFindexDindex	1		B7-4 – FI – Index into the Table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor B3-0 – DI - Index into the Table 8 in ISO/IEC 7816-3:1997 selecting a baud rate conversion factor
11	bmTCCKST0	1		B0 – 0b, B7-2 – 000000b B1 – Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.
12	bGuardTimeT0	1		Extra Guardtime between two characters. Add 0 to 254 etu to the normal guardtime of 12etu. FFh is the same as 00h.
13	bWaitingIntege rT0	1		WI for T=0 used to define WWT
14	bClockStop	1		ICC Clock Stop Support 00h = Stopping the Clock is not allowed 01h = Stop with Clock signal Low 02h = Stop with Clock signal High 03h = Stop with Clock either High or Low

Protocol Data Structure for Protocol T=1 (dwLength=00000007h)

Field	Size	Value	Description
			B7-4 – FI – Index into the Table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor
bmFindexDindex	1		B3-0 – DI - Index into the Table 8 in
			ISO/IEC 7816-3:1997 selecting a baud rate conversion factor
			B7-2 – 000100b
BmTCCKST1	1		B0 – Checksum type (b0=0 for LRC, b0=1 for CRC
11 BmTCCKST1			B1 – Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.
BGuardTimeT1	1		Extra Guardtime (0 to 254 etu between two characters). If value is FFh, then guardtime is reduced by 1 etu.
13 BWaitingIntege 1			B7-4 = BWI values 0-9 valid
			B3-0 = CWI values 0-Fh valid
			ICC Clock Stop Support
			00h = Stopping the Clock is not allowed
bClockStop	1		01h = Stop with Clock signal Low
			02h = Stop with Clock signal High
			03h = Stop with Clock either High or Low
bIFSC	1		Size of negotiated IFSC
bNadValue	1	00h	Only support NAD = 00h
	bmFindexDindex BmTCCKST1 BGuardTimeT1 BWaitingIntege rT1 bClockStop bIFSC	bmFindexDindex 1 BmTCCKST1 1 BGuardTimeT1 1 BWaitingIntege rT1 1 bClockStop 1 bIFSC 1	bmFindexDindex 1 BmTCCKST1 1 BGuardTimeT1 1 BWaitingIntege rT1 1 bClockStop 1 bIFSC 1

The response to this message is the ${\tt RDR_to_PC_Parameters}$ message.

7.1.2. CCID Bulk-IN Messages

The Bulk-IN Messages are used in response to the Bulk-OUT Messages. ACR100I shall follow the CCID Bulk-IN Messages as specified in CCID Section 4. This section lists the CCID Bulk-IN Messages to be supported by ACR100I.

7.1.2.1. RDR_to_PC_DataBlock

This message is sent by ACR100I in response to PC_to_RDR_IccPowerOn, PC to RDR XfrBlock and PC to RDR Secure messages.

Offset	Field	Size	Value	Description
0	bMessageType	1	80h	Indicates that a data block is being sent from the CCID
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Same value as in Bulk-OUT message
6	bSeq	1		Same value as in Bulk-OUT message
7	bStatus	1		Slot status register as defined in CCID Section 4.2.1
8	bError	1		Slot error register as defined in CCID Section 4.2.1 and its specifications Section 5.2.8
9	bChainParameter	1	00h	RFU (TPDU exchange level)
10	AbData	Byte array		This field contains the data returned by the CCID

7.1.2.2. RDR_to_PC_SlotStatus

This message is sent by ACR100I in response to $PC_to_RDR_IccPowerOff$, $PC_to_RDR_GetSlotStatus$, $PC_to_RDR_Abort$ messages and Class specific ABORT request.

Offset	Field	Size	Value	Description
0	bMessageType	1	81h	
1	dwLength	4	00000 000h	Size of extra bytes of this message
5	bSlot	1		Same value as in Bulk-OUT message
6	bSeq	1		Same value as in Bulk-OUT message
7	bStatus	1		Slot status register as defined in CCID Section 4.2.1
8	bError	1		Slot error register as defined in CCID Section 4.2.1 and its specifications in Section 5.2.8

Offset	Field	Size	Value	Description
				value =
				00h Clock running
			01h Clock stopped in state L	
9	bClockStatus	1		02h Clock stopped in state H
			03h Clock stopped in an unknown state	
				All other values are RFU.

7.1.2.3. RDR_to_PC_Parameters

This message is sent by ACR100I in response to PC_to_RDR_GetParameters, PC_to_RDR_ResetParameters and PC_to_RDR_SetParameters messages

Offset	Field	Size	Value	Description
0	bMessageType	1	82h	
1	dwLength	4		Size of extra bytes of this message
5	bSlot	1		Same value as in Bulk-OUT message
6	bSeq	1		Same value as in Bulk-OUT message
7	bStatus	1		Slot status register as defined in CCID Section 4.2.1
8	bError	1		Slot error register as defined in CCID Section 4.2.1 and this specification Section 5.2.8
9	bProtocolNum	1		Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for I2C protocol
10	abProtocolDat aStructure	Byte array		Protocol Data Structure as summarized in Section 5.2.3.

7.1.3. Commands Accessed via PC_to_RDR_XfrBlock

7.1.3.1. GET_READER_INFORMATION

This command returns relevant information about the particular ACR100I model and the current operating status, such as the firmware version number; the maximum data length of a command and response; the supported card types; and whether a card is inserted and powered up or not.

Note: This command can only be used after the logical smart card reader communication has been established using the SCardConnect() API. For details of SCardConnect() API, please refer to PC/SC specifications.

Command format (abData field in the PC_to_RDR_XfrBlock)

Pseudo-APDU					
CLA INS P1 P2 Lc					
FF H	09 н	00 н	00 н	10 н	

Response data format (abData field in the RDR_to_PC_DataBlock)

FIRM	WARE	MAX_C	MAX_R	C_TYPE	C_SEL	C_STAT

FIRMWARE 10 bytes data for firmware version

MAX_C The maximum number of command data bytes.

MAX_R The maximum number of data bytes that can be requested to be transmitted in a response.

C_TYPEThe card types supported by the ACR100I. This data field is a bitmap with each bit representing a particular card type. A bit set to '1' means the corresponding card type is supported by the reader and can be selected with the SELECT_CARD_TYPE command. The bit assignment is as follows:

See Appendix A for the correspondence between these bits and the respective card types.

 $\mathbf{C}_{\mathbf{SEL}}$ The currently selected card type. A value of 00_{H} means that no card type has been selected.

C_STAT Indicates whether a card is physically inserted in the reader and whether the card is

powered up:

00_H: no card inserted

01_H: card inserted, not powered up

03_H: card powered up

7.2. Mass Storage

Mass Storage Device Class specifies all protocols required for data transaction between the Host (computer) and storage devices. The configurations and usage of USB endpoints on ACR100I shall follow Mass Storage Class Bulk-Only Transport in Section 3 (Protocol Code) of the USB Mass Storage Device Specification. This document is available at: www.usb.org.

An overview of this specification is summarized below:

- 1. Control Commands are sent on control pipe (default pipe). It is shared with the CCID interface.
- 2. Data-Out Command Protocol uses the Bulk-OUT endpoint to transfer data from the host to the device.
- 3. Data-In Command Protocol uses the Bulk-IN endpoint to transfer data from the device or to return status about the device.

Appendix A. Supported Card Types

The following table is a list of the card types returned by <code>GET_READER_INFORMATION</code> corresponding with the respective card type code:

Card type code	Card Type
00 н	Auto-select T=0 or T=1 communication protocol
01 _H	I2C memory card (1k, 2k, 4k, 8k and 16k bits)
02 _H	I2C memory card (32k, 64k, 128k, 256k, 512k and 1024k bits)
03 _H	Atmel AT88SC153 secure memory card
04 н	Atmel AT88SC1608 secure memory card
05 _H	Infineon SLE4418 and SLE4428
06 H	Infineon SLE4432 and SLE4442
07 н	Infineon SLE4406, SLE4436 and SLE5536
08 н	Infineon SLE4404
09 н	Atmel AT88SC101, AT88SC102 and AT88SC1003
0C H	MCU-based cards with T=0 communication protocol
0D H	MCU-based cards with T=1 communication protocol

Appendix B. Response Error Codes

The following table summarizes the possible error code returned by ACR100I:

Error Code	Status
FF h	SLOTERROR_CMD_ABORTED
FE h	SLOTERROR_ICC_MUTE
FD h	SLOTERROR_XFR_PARITY_ERROR
FC h	SLOTERROR_XFR_OVERRUN
FB h	SLOTERROR_HW_ERROR
F8 h	SLOTERROR_BAD_ATR_TS
F7 h	SLOTERROR_BAD_ATR_TCK
F6 h	SLOTERROR_ICC_PROTOCOL_NOT_SUPPORTED
F5 h	SLOTERROR_ICC_CLASS_NOT_SUPPORTED
F4 h	SLOTERROR_PROCEDURE_BYTE_CONFLICE
F3 h	SLOTERROR_DEACTIVATED_PROTOCOL
F2 h	SLOTERROR_BUSY_WITH_AUTO_SEQUENCE
E0 h	SLOTERROR_CMD_SLOT_BUSY